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Communication may be broadly defined as the transfer of information from one point to
another. When the information is to be conveyed over any distance a communication system
Is usually required. Within a communication system the information transfer is frequently
achieved by superimposing or modulating the information onto an electromagnetic wave
which acts as a carrier for the information signal. This modulated carrier is then trans- mitted
to the required destination where it is received and the original information signal is obtained
by demodulation. Sophisticated techniques have been developed for this process using
electromagnetic carrier waves operating at radio frequencies as well as microwave and
millimeter wave frequencies. However, ‘communication’ may also be achieved using an

electromagnetic carrier which is selected from the optical range of frequencies.

The general system:

An optical fiber communication system is similar in basic concept to any type of
communication system. A block schematic of a general communication system is shown
in Figure 1.2(a), the function of which is to convey the signal from the information
source over the transmission medium to the destination. The communication system
therefore consists of a transmitter or modulator linked to the information source, the
transmission medium, and a receiver or demodulator at the destination point. In
electrical communications the information source provides an electrical signal, usually
derived from a message signal which is not electrical (e.g. sound), to a transmitter
comprising electrical and electronic components which converts the signal into a
suitable form for propagation over the transmission medium. This is often achieved by
modulating a carrier, which, as mentioned pre- viously, may be an electromagnetic
wave.



For optical fiber communications the system shown in Figure 1.1(a) may be considered
in slightly greater detail, as given in Figure 1.1(b). In this case the information source
pro- vides an electrical signal to a transmitter comprising an electrical stage which
drives an optical source to give modulation of the light wave carrier. The optical source
which pro- vides the electrical-optical conversion may be either a semiconductor laser
or light-emitting diode (LED).

The transmission medium consists of an optical fiber cable and the receiver consists of an
optical detector which drives a further electrical stage and hence provides demodulation of
the optical carrier. Photodiodes (p—n, p—i—n or avalanche) and, in some instances,
phototransistors and photoconductors are utilized for the detection of the optical signal and
the optical—electrical conversion. Thus there is a requirement for electrical interfacing at
either end of the optical link and at present the signal processing is usually performed
electrically.*

The optical carrier may be modulated using either an analog or digital information
signal. In the system shown in Figure 1.1(b) analog modulation involves the variation of
the light emitted from the optical source in a continuous manner. With digital
modulation, however, discrete changes in the light intensity are obtained (i.e. on—off



pulses). Although often simpler to implement, analog modulation with an optical fiber
communication sys- tem is less efficient, requiring a far higher signal-to-noise ratio at
the receiver than digital modulation. Also, the linearity needed for analog modulation is
not always provided by semiconductor optical sources, especially at high modulation
frequencies. For these reasons, analog optical fiber communication links are generally
limited to shorter distances and lower bandwidth operation than digital links.

Introduction

The transmission of light via a dielectric waveguide structure was first proposed and
investigated at the beginning of the twentieth century. In 1910 Hondros and Debye
conducted a theoretical study, and experimental work was reported by Schriever in 1920.
However, a transparent dielectric rod, typically of silica glass with a refractive index of
around 1.5, surrounded by air, proved to be an impractical waveguide due to its
unsupported structure (especially when very thin waveguides were considered in order
to limit the number of optical modes propagated) and the excessive losses at any dis-
continuities of the glass—air interface. Nevertheless, interest in the application of
dielectric optical waveguides in such areas as optical imaging and medical diagnosis
(e.g. endoscopes) led to proposals for a clad dielectric rod in the mid-1950s in order to
overcome these problems. This structure is illustrated in Figure 2.1, which shows a
trans- parent core with a refractive index n1 surrounded by a transparent cladding of
slightly lower refractive index n2. Theinvention of the clad waveguide structure led to
the first serious proposals by Kao and Hockham and Werts, in 1966, to utilize optical
fibers as a communications medium, even though they had losses in excess of 1000 dB
km—1.



These proposals stimulated tremendous efforts to reduce the attenuation by purification
of the materials. This has resulted in improved conventional glass refining techniques
giving fibers

with losses of around 4.2 dB km. Also, progress in glass refining processes such as
depositing vapor-phase reagents to form silice allowed fibers with losses below 1 dB km
to be fabricated.

Most of this work was focused on the 0.8 to 0.9 um wavelength band because the first
generation of optical sources fabricated from gallium aluminum arsenide alloys operated
in this region. However, as silica fibers were studied in further detail it became apparent
that transmission at longer wavelengths (1.1 to 1.6 um) would result in lower losses and
reduced signal dispersion. This produced a shift in optical fiber source and detector
technology in order to provide operation at these longer wavelengths. Hence at longer
wavelengths, especially around 1.55 pum, typical high-performance fibers have losses of
0.2 dB km.

As such losses are very close to the theoretical lower limit for silicate glass fiber, there is
interest in glass-forming systems which can provide low-loss transmission in the mid
infrared (2 to 5 um) optical wavelength regions. Although a system based on fluoride
glass offers the potential for ultra-low-loss transmission of 0.01 dB kmat a wavelength
of 2.55 um, such fibers still exhibit losses of at least 0.65 dB km properties of silica
fibers.

In order to appreciate the transmission mechanism of optical fibers with dimensions
approximating to those of a human hair, it is necessary to consider the optical



waveguideing of a cylindrical glass fiber. Such a fiber acts as an open optical
waveguide, which may be analyzed utilizing simple ray theory. However, the concepts
of geometric optics are not sufficient when considering all types of optical fiber, and
electromagnetic mode theory must be used to give a complete picture. The following
sections will therefore outline the transmission of light in optical fibers prior to a more
detailed discussion of the various types of fiber.

Ray theory transmission

1. Total internal reflection

To consider the propagation of light within an optical fiber utilizing the ray theory model
it is necessary to take account of the refractive index of the dielectric medium. The
refractive index of a medium is defined as the ratio of the velocity of light in a vacuum
to the velocity of light in the medium.

Aray of light travels more slowly in an optically dense medium than in one that is less
dense, and the refractive index gives a measure of this effect. When a ray is incident on
the interface between two dielectrics of differing refractive indices (e.g. glass—air),
refraction occurs, as illustrated in Figure 1.2(a). It may be observed that the ray
approaching the interface is propagating in a dielectric of refractive index n and is at an
angle ¢ to the normal at the surface of the interface. If the dielectric on the other side of
the interface has a refractive index nwhich is less than ni, then the refraction is such that
the ray path in this lower index medium is at an angle to the normal, where is greater
than . The angles of incidence and refraction are related to each other and to the

refractive indices of the dielectrics by Snell’s law of refraction, which states that:




It may also be observed in Figure 1.2(a) that a small amount of light is reflected back
into the originating dielectric medium (partial internal reflection). As nis greater than n,
the angle of refraction is always greater than the angle of incidence. Thus when the
angle of refraction is 90° and the refracted ray emerges parallel to the interface between
the dielectrics, the angle of incidence must be less than 90°. This is the limiting case of
refraction and the angle of incidence is now known as the critical angle ¢c, as shown in
Figure 1.2(b). From Eq. (1.1) the value of the critical angle is given by

At angles of incidence greater than the critical angle the light is reflected back into the
originating dielectric medium (total internal reflection) with high efficiency (around
99.9%). Hence, it may be observed in Figure 1.2(c) that total internal reflection occurs at
the inter- face between two dielectrics of differing refractive indices when light is
incident on the dielectric of lower index from the dielectric of higher index, and the



angle of incidence of the ray exceeds the critical value. This is the mechanism by which
light at a sufficiently shallow angle (less than 90° — may be considered to propagate
down an optical fiber with low loss.

Figure 1.3 illustrates the transmission of a light ray in an optical fiber via a series of total
internal reflections at the interface of the silica core and the slightly lower refractive
index silica cladding. The ray has an angle of incidence ¢ at the interface which is
greater than the critical angle and is reflected at the same angle to the normal.

The light ray shown in Figure 1.3 is known as a meridional ray as it passes through the
axis of the fiber core. This type of ray is the simplest to describe and is generally used
when illustrating the fundamental transmission properties of optical fibers. It must also
be noted that the light transmission illustrated in Figure 1.3 assumes a perfect fiber, and
that any discontinuities or imperfections at the core—cladding interface would probably
result in refraction rather than total internal reflection, with the subsequent loss of the
light ray into the cladding.

2. Acceptance angle

Having considered the propagation of light in an optical fiber through total internal
reflection at the core—cladding interface, it is useful to enlarge upon the geometric optics
approach with reference to light rays entering the fiber. Since only rays with a
sufficiently shallow grazing angle (i.e. with an angle to the normal greater than ¢c) at the
core—cladding interface are transmitted by total internal reflection, it is clear that not all
rays entering the fiber core will continue to be propagated down its length.



The geometry concerned with launching a light ray into an optical fiber is shown in
Figurel.4, which illustrates a meridional ray A at the critical angle gc within the fiber at
the core— cladding interface. It may be observed that this ray enters the fiber core at an
angle 0a to the fiber axis and is refracted at the air—core interface before transmission to
the core—cladding interface at the critical angle. Hence, any rays which are incident into
the fiber core at an angle greater than 0a will be transmitted to the core—cladding
interface at an angle less than @c, and will not be totally internally reflected. This
situation is also illustrated in Figure 2.4, where the incident ray B at an angle greater
than 0Oa is refracted into the cladding and eventually lost by radiation. Thus for rays to be
transmitted by total internal reflection within the fiber core they must be incident on the

fiber core within an acceptance cone defined by the conical half angle Oa.

Hence 0a is the maximum angle to the axis at which light may enter the fiber in order to
be propagated, and is often referred to as the acceptance angle for the fiber.

If the fiber has a regular cross-section (i.e. the core—cladding interfaces are parallel and
there are no discontinuities) an incident meridional ray at greater than the critical angle
will continue to be reflected and will be transmitted through the fiber. From symmetry
considerations it may be noted that the output angle to the axis will be equal to the input
angle for the ray, assuming the ray emerges into a medium of the same refractive index
from which it was input.



3. Numerical aperture

The acceptance angle for an optical fiber was defined in the preceding section. However,
it is possible to continue the ray theory analysis to obtain a relationship between the
acceptance angle and the refractive indices of the three media involved, namely the core,
cladding and air. This leads to the definition of a more generally used term, the
numerical aperture of the fiber. It must be noted that within this analysis, as with the
preceding discussion of acceptance angle, we are concerned with meridional rays within

the fiber. Figure 1.5 shows a light ray incident on the fiber core at an angle 01 to the fiber
axis which is less than the acceptance angle for the fiber 0a. The ray enters the fiber from
a medium (air) of refractive index no, and the fiber core has a refractive index n1, which
Is slightly greater than the cladding refractive index n2.

Assuming the entrance face at the fiber core to be normal to the axis, then considering
the refraction at the air—core interface and using Snell’s law given by Eq. (1.1):

Considering the right-angled triangle ABC indicated in Figure 2.5, then:



where ¢ is greater than the critical angle at the core—cladding interface. Hence Eq. (1.3)
becomes:

Using the trigonometrical relationship sin2 ¢ + cos2 ¢ = 1, Eq. (1.5) may be written in
the form:

When the limiting case for total internal reflection is considered, ¢ becomes equal to the
critical angle for the core—cladding interface and is given by Eq. (1.2). Also in this
limiting case 01 becomes the acceptance angle for the fiber 6a. Combining these limiting
cases into Eqg. (1.6) gives:

Equation (1.7), apart from relating the acceptance angle to the refractive indices, serves
as the basis for the definition of the important optical fiber parameter, the numerical
aperture (NA). Hence the NA is defined as:

Since the NA is often used with the fiber in air where no is unity, it is simply equal to sin
0a. It may also be noted that incident meridional rays over the range 0 < 01 < 6a will be
propagated within the fiber. The NA may also be given in terms of the relative refractive
index difference between the core and the cladding which is defined as:



The relationships given in Egs (1.8) and (1.10) for the numerical aperture are a very
useful measure of the light-collecting ability of a fiber. They are independent of the fiber
core diameter and will hold for diameters as small as 8 um. However, for smaller
diameters they break down as the geometric optics approach is invalid. This is because
the ray theory model is only a partial description of the character of light. It describes
the direction a plane wave component takes in the fiber but does not take into account
interference between such components. When interference phenomena are considered it
Is found that only rays with certain discrete characteristics propagate in the fiber core.
Thus the fiber will only support a discrete number of guided modes. This becomes
critical in small- core-diameter fibers which only support one or a few modes. Hence
electromagnetic mode theory must be applied in these cases.

4. Skew rays

In the preceding sections we have considered the propagation of meridional rays in the
optical waveguide. However, another category of ray exists which is transmitted without
passing through the fiber axis. These rays, which greatly outnumber the meridional rays,
follow a helical path through the fiber, as illustrated in Figure 1.6, and are called skew
rays.

It is not easy to visualize the skew ray paths in two dimensions, but it may be observed
from Figure 1.6(b) that the helical path traced through the fiber gives a change in
direction of 2y at each reflection, where vy is the angle between the projection of the ray
in two dimensions and the radius of the fiber core at the point of reflection. Hence,
unlike meridional rays, the point of emergence of skew rays from the fiber in air will



depend upon the number of reflections they undergo rather than the input conditions to
the fiber. When the light input to the fiber is non uniform, skew rays will therefore tend
to have a smoothing effect on the distribution of the light as it is transmitted, giving a
more uniform output. The amount of smoothing is dependent on the number of
reflections encountered by the skew rays. A further possible advantage of the
transmission of skew rays becomes apparent when their acceptance conditions are
considered

In order to calculate the acceptance angle for a skew ray it is necessary to define the
direction of the ray in two perpendicular planes. The geometry of the situation is
illustrated in Figure 1.7 where a skew ray is shown incident on the fiber core at the
point A, at an angle s to the normal at the fiber end face. The ray is refracted at the air—
core interface before traveling to the point B in the same plane. The angles of incidence
and reflection at the pointB are @, which is greater than the critical angle for the core—
cladding interface.

When considering the ray between A and B it is necessary to resolve the direction of the
ray path AB to the core radius at the point B. As the incident and reflected rays at the



point B are in the same plane, this is simply cos ¢. However, if the two perpendicular
planes through which the ray path ABtraverses are considered, then vy is the angle
between the core radius and the projection of the ray onto a plane BRS normal to the
core axis, and 0 is the angle between the ray and a line AT drawn parallel to the core
axis. Thus to resolve the ray path AB relative to the radius BR in these two perpendicular

planes requires multiplication by cos y and sin 0

Hence, the reflection at point B at an angle ¢ may be given by:

Using the trigonometrical relationship sin2 ¢ + cos2 ¢ =1, Eq. (2.11) becomes:

If the limiting case for total internal reflection is now considered, then ¢ becomes equal
to the critical angle ¢c for the core—cladding interface and, following Eq. (2.2), is given
by sin ¢c = n2/n1. Hence, Eq. (2.12) may be written as:

Furthermore, using Snell’s law at the point A, following Eq. (2.1) we can write:



where 0a represents the maximum input axial angle for meridional rays, as expressed in

Section 1.2.2, and 0 is the internal axial angle. Hence substituting for sin 6 from
Eq.(1.13) into Eq. (1.14) gives:

where Oas now represents the maximum input angle or acceptance angle for skew rays. It
may be noted that the inequality shown in Eq. (1.13) is no longer necessary as all the
terms in Eq. (1.15) are specified for the limiting case. Thus the acceptance conditions for
skew rays are:

Therefore by comparison with Eq. (1.8) derived for meridional rays, it may be noted that
skew rays are accepted at larger axial angles in a given fiber than meridional rays,

depending upon the value of cos vy. In fact, for meridional rays cos vy is equal to unity and
Bas becomes equal to 0a. Thus although 0a is the maximum conical half angle for the
acceptance of meridional rays, it defines the minimum input angle for skew rays. Hence,
as may be observed from Figure 1.6, skew rays tend to propagate only in the annular
region near the outer surface of the core, and do not fully utilize the core as a
transmission medium. However, they are complementary to meridional rays and
increase the light-gathering capacity of the fiber. This increased light-gathering ability
may be significant for large NA fibers, but for most communication design purposes the
expressions given in Egs (1.8) and (1.10) for meridional rays are considered adequate.

Electromagnetic mode theory for optical propagation



1. Electromagnetic waves

In order to obtain an improved model for the propagation of light in an optical fiber,
elec-tromagnetic wave theory must be considered. The basis for the study of

electromagnetic wave propagation is provided by Maxwell’s equations [Ref. 13]. For a
medium with zero conductivity these vector relationships may be written in terms of the
electric field E, magnetic field H, electric flux density D and magnetic flux density B as
the curl equations:

where ¢ is the dielectric permittivity and p is the magnetic permeability of the medium.
Substituting for D and B and taking the curl of Eqgs (1.18) and 1.19) gives:

Then using the divergence conditions of Eqgs (1.20) and (1.21) with the vector identity:



wherev 2 is the Laplacian operator. For rectangular Cartesian and cylindrical polar
coordinates the above wave equations hold for each component of the field vector, every
component satisfying the scalar wave equation

Where y may represent a component of the E or H field and up is the phase velocity
(velocity of propagation of a point of constant phase in the wave) in the dielectric
medium. It follows that:

Where pr and er are the relative permeability and permittivity for the dielectric medium
and po and €0 are the permeability and permittivity of free space. The velocity of light in
free spacecis therefore:



If planar waveguides, described by rectangular Cartesian coordinates (x, Y, z), or circular
fibers, described by cylindrical polar coordinates (r, ¢, z), are considered, then the
Laplacian operator takes the form:

respectively.

It is necessary to consider both these forms for a complete treatment of optical
propagation in the fiber, although many of the properties of interest may be dealt with
using Cartesian coordinates.

The basic solution of the wave equation is a sinusoidal wave, the most important form of
which is a uniform plane wave given by

where o is the angular frequency of the field, t is the time, K is the propagation vector
which gives the direction of propagation and the rate of change of phase with distance,
while the components of r specify the coordinate point at which the field is observed.
When A is the optical wavelength in a vacuum, the magnitude of the propagation vector
or the vacuum phase propagation constant k (where k = |k|) is given by:

It should be noted that in this case k is also referred to as the free space wave number.



2. Modes in a planar guide

The planar guide is the simplest form of optical waveguide. We may assume it consists
of a slab of dielectric with refractive index n1 sandwiched between two regions of lower
refractive index n2. In order to obtain an improved model for optical propagation it is
useful to consider theinterference of plane wave components within this dielectric
waveguide.

The conceptual transition from ray to wave theory may be aided by consideration of a
plane monochromatic wave propagating in the direction of the ray path within the guide
(see Figure 1.8(a)). As the refractive index within the guide is n1, the optical wavelength
in this region is reduced to A/n1, while the vacuum propagation constant is increased

to nik. When 0 is the angle between the wave propagation vector or the equivalent ray
and the guide axis, the plane wave can be resolved into two component plane waves
propagating in the z and x directions, as shown in Figure 1.8(a).

Figure 1.8 The formation of a mode in a planar dielectric guide: (a) a plane
wavepropagating in the guide shown by its wave vector or equivalent ray — the wave
vector is resolved into components in the z and x directions; (b) the interference of plane
waves in the guide forming the lowest order mode (m = 0)

The component of the phase propagation in the Z direction is given by:



The component of the phase propagation constant in the x direction Px is:

The component of the plane wave in the x direction is reflected at the interface between
the higher and lower refractive index media. When the total phase change* after two
successive reflections at the upper and lower interfaces (between the points P and Q) is
equal to 2mn radians, where m is an integer, then constructive interference occurs and a
standing wave is obtained in the x direction. This situation is illustrated in Figure 1.8(b),
where the interference of two plane waves is shown. In this illustration it is assumed that
the interference forms the lowest order (where m = 0) standing wave, where the electric
field is a maximum at the center of the guide decaying towards zero at the boundary
between the guide and cladding. However, it may be observed from Figure 1.8(b) that
the electric field penetrates some distance into the cladding, a phenomenon which is
discussed in Section 1.3.4.



Figure 1.9 Physical model showing the ray propagation and the corresponding
transverse electric (TE) field patterns of three lower order models (m =1, 2, 3) in the
planar dielectric guide

Nevertheless, the optical wave is effectively confined within the guide and the electric
field distribution in the x direction does not change as the wave propagates in

the z direction. The sinusoidally varying electric field in the z direction is also shown in
Figure 1.8(b). The stable field distribution in thex direction with only a periodic zdepen-
dence is known as a mode. A specific mode is obtained only when the angle between the
propagation vectors or the rays and the interface have a particular value, as indicated in
Figure 1.8(b). In effect, Eqgs (1.34) and (1.35) define a group or congruence of rays
which in the case described represents the lowest order mode. Hence the light



propagating within the guide is formed into discrete modes, each typified by a distinct

value of 0.

To visualize the dominant modes propagating in the z direction we may consider plane
waves corresponding to rays at different specific angles in the planar guide. These plane
waves give constructive interference to form standing wave patterns across the guide
following a sine or cosine formula. Figure 2.9 shows examples of such rays form =1, 2,
3, together with the electric field distributions in the x direction. It may be observed

that mdenotes the number of zeros in this transverse field pattern. In this way m signifies
the order of the mode and is known as the mode number.

When light is described as an electromagnetic wave it consists of a periodically varying
electric field E and magnetic field H which are orientated at right angles to each other.
The transverse modes shown in Figure 1.9 illustrate the case when the electric field is
perpendicular to the direction of propagation and hence Ez = 0, but a corresponding
component of the magnetic field H is in the direction of propagation. In this instance the
modes are said to be transverse electric (TE). Alternatively, when a component of

the E field is in the direction of propagation, but Hz =0, the modes formed are called
transverse magnetic (TM). The mode numbers are incorporated into this nomenclature
by referring to the Tem and TMm modes, as illustrated for the transverse electric modes
shown in Figure 1.9. When the total field lies in the transverse plane, transverse
electromagnetic (TEM) waves exist where both Ez and H:z are zero. However, although
TEM waves occur in metallic conductors (e.g. coaxial cables) they are seldom found in
optical waveguides.



3. Phase and group velocity

The envelope of the wave package or group of waves travels at a group velocity vg With
in all electromagnetic waves, whether plane or otherwise, there are points of constant
phase. For plane waves these constant phase points form a surface which is referred to as
a wavefront. As a monochromatic lightwave propagates along a waveguide in

the z direction these points of constant phase travel at a phase velocity vp given by

where o is the angular frequency of the wave. However, it is impossible in practice to
produce perfectly monochromatic lightwaves, and light energy is generally composed of
a sum of plane wave components of different frequencies. Often the situation exists
where a group of waves with closely similar frequencies propagate so that their resultant
forms a packet of waves. The formation of such a wave packet resulting from the
combination of two waves of slightly different frequency propagating together is
illustrated in Figure 1.10. This wave packet does not travel at the phase velocity of the

individual waves but is observed to move at a group velocity vg given by :




The group velocity is of greatest importance in the study of the transmission character-
istics of optical fibers as it relates to the propagation characteristics of observable wave
groups or packets of light. If propagation in an infinite medium of refractive index n1 is
considered, then the propagation constant may be written as:

wherec is the velocity of light in free space. Equation (1.38) follows from Eqgs (1.33) and
(1.34) where we assume propagation in the z direction only and hence cos 0 is equal to
unity. Using Eg. (1.36) we obtain the following relationship for the phase velocity:

Similarly, employing Eq. (1.37), where in the limit 6«/3 becomes dw/dp, the group
velocity:

The parameter Ng is known as the group index of the guide.

Cylindrical fiber

1. Modes

The exact solution of Maxwell’s equations for a cylindrical homogeneous core dielectric
waveguide* involves much algebra and yields a complex result. Although

the presentation of thismathematics is beyond the scope of this text, it is useful to
consider the resulting modal fields. In common with the planar guide (Section 1.3.2), TE



(where Ez = 0) and TM (where Hz = 0) modes are obtained within the dielectric cylinder.
The cylindrical waveguide, however, is bounded in two dimensions rather than one.
Thus two integers, | and m, are necessary in order to specify the modes, in contrast to the
single integer (m) required for the planar guide.

For the cylindrical waveguide we therefore refer to TEim and TMim modes. These modes
correspond to meridional rays (see Section 1.2.1) traveling within the fiber. However,
hybrid modes where Ez and Hz are nonzero also occur within the cylindrical waveguide.
These modes, which result from skew ray propagation (see Section 1.2.4) within the
fiber, are designated HEIm and EHIm depending upon whether the components

of H or E make the larger contribution to the transverse (to the fiber axis) field. Thus an
exact description of the modal fields in a step index fiber proves somewhat complicated.

Fortunately, the analysis may be simplified when considering optical fibers for com-
munication purposes. These fibers satisfy the weakly guiding approximation where the
relative index difference Al. This corresponds to small grazing angles 6 in Eq. (1.34). In
fact is usually less than 0.03 (3%) for optical communications fibers. For weakly
guiding structures with dominant forward propagation, mode theory gives dominant
transverse field components. Hence approximate solutions for the full set of HE, EH, TE
and TM modes may be given by two linearly polarized components.

These linearly polarized (LP) modes are not exact modes of the fiber except for the
fundamental (lowest order) mode. However, as in weakly guiding fibers is very small,
then HE— EH mode pairs occur which have almost identical propagation constants. Such
modes are said to be degenerate. The superpositions of these degenerating modes
characterized by a common propagation constant correspond to particular LP modes
regardless of their HE, EH, TE or TM field configurations. This linear combination of
degenerate modes obtained from the exact solution produces a useful simplification in
the analysis of weakly guiding fibers.

The relationship between the traditional HE, EH, TE and TM mode designations and the
LPim mode designations is shown in Table 1.1. The mode subscripts | and m are related
to the electric field intensity profile for a particular LP mode (see Figure 1.11(d)). There
are in general 21 field maxima around the circumference of the fiber core and m field



maxima along a radius vector. Furthermore, it may be observed from Table 1.1 that the
notation for labeling the HE and EH modes has changed from that specified for the exact
solution in the cylindrical waveguide mentioned previously.




Figure 1.11 The electric field configurations for the three lowest LP modes illustrated
in terms oftheir constituent exact modes: (a) LP mode designations; (b) exact mode
designations; (c) electric field distribution of the exact modes; (d) intensity distribution
of Ex for the exact modes indicating the electric field intensity profile for the
corresponding LP modes

The subscript | in the LP notation now corresponds to HE and EH modes with labels | +
1 and | — 1 respectively. The electric field intensity profiles for the lowest three LP
modes, together with the electric field distribution of their constituent exact modes, are
shown in Figure 1.11.



It may be observed from the field configurations of the exact modes that the field
strength in the transverse direction (Ex or Ey) is identical for the modes which belong to
the same LP mode.

Hence the origin of the term ‘linearly polarized’.

Using Eq. (1.31) for the cylindrical homogeneous core waveguide under the weak
guidance conditions outlined above, the scalar wave equation can be written in the form

where v is the field (E or H), n1 is the refractive index of the fiber core, k is the
propagation constant for light in a vacuum, and r and ¢ are cylindrical coordinates. The

propagation constants of the guided modes [ lie in the range:

where n2 is the refractive index of the fiber cladding. Solutions of the wave equation for
the cylindrical fiber are separable, having the form:

where in this case y represents the dominant transverse electric field component. The

periodic dependence on ¢ following coslo or sin l¢ gives a mode of radial order |. Hence
the fiber supports a finite number of guided modes of the form of Eq. (1.43).

Introducing the solutions given by Eq. (1.43) into Eq. (1.41) results in a differential
equation of the form:




For a step index fiber with a constant refractive index core, Eq. (1.43) is a Bessel
differential equation and the solutions are cylinder functions. In the core region the
solutions are Bessel functions denoted by Ju.

A graph of these gradually damped oscillatory functions (with respect to r) is shown in
Figure 1.12(a). It may be noted that the field is finite at r = 0 and may be represented by
the zero-order Bessel function JO. However, the field vanishes as r goes to infinity and
the solutions in the cladding are therefore modified Bessel functions denoted by Ki.
These modified functions decay exponentially with respect to r, as illustrated in Figure
1.12(b). The electric field may therefore be given by:

Where G is the amplitude coefficient and R = r/a is the normalized radial coordinate
when a is the radius of the fiber core; U and W, which are the eigenvalues in the core
and cladding respectively,* are defined as:

2. Mode coupling

We have thus far considered the propagation aspects of perfect dielectric waveguides.
However, waveguide perturbations such as deviations of the fiber axis from straightness,
variations in the core diameter, irregularities at the core—cladding interface and refractive
index variations may change the propagation characteristics of the fiber. These will have
the effect of coupling energy traveling in one mode to another depending on the specific
perturbation. Ray theory aids the understanding of this phenomenon, as shown in Figure
1.13, which illustrates two types of perturbation. It may be observed that in both cases
the ray no longer maintains the same angle with the axis. In electromagnetic wave
theory this corres- ponds to a change in the propagating mode for the light. Thus



individual modes do not normally propagate throughout the length of the fiber without
large energy transfers to adjacent modes, even when the fiber is exceptionally good
quality and is not strained or bent by its surroundings. This mode conversion is known
as mode coupling or mixing. It is usually analyzed using coupled mode equations which
can be obtained directly from Maxwell’s equations.

Figure 1.13 Ray theory illustrations showing two of the possible fiber perturbations which
give mode coupling: (a) irregularity at the core—cladding interface; (b) fiber bend

3. Step index fibers

The optical fiber considered in the preceding sections with a core of constant refractive
index n1 and a cladding of a slightly lower refractive index n2is known as step index
fiber. This is because the refractive index profile for this type of fiber makes a step
change at the core—cladding interface, as indicated in Figure 1.14, which illustrates the
two major types of step index fiber.



The refractive index profile may be defined as:

Figure 1.14(a) shows a multimode step index fiber with a core diameter of around 50um
or greater, which is large enough to allow the propagation of many modes within the
fiber core. This is illustrated in Figure 1.14(a) by the many different possible ray paths
through the fiber. Figure 1.14(b) shows a single-mode or monomode step index fiber
which allows the propagation of only one transverse electromagnetic mode (typically
HE11), and hence the core diameter must be of the order of 2 to 10um. The propagation




of a single mode is illustrated in Figure 1.14(b) as corresponding to a single ray path
only (usually shown as the axial ray) through the fiber.

The single-mode step index fiber has the distinct advantage of low intermodal dispersion
(broadening of transmitted light pulses), as only one mode is transmitted, whereas with
multimode step index fiber considerable dispersion may occur due to the differing group
velocities of the propagating modes. This in turn restricts the maximum bandwidth
attainable with multimode step index fibers, especially when com- pared with single-
mode fibers. However, for lower bandwidth applications multimode fibers have several
advantages over single-mode fibers. These are:

a) The use of spatially incoherent optical sources (e.g. most light-emitting diodes)
which cannot be efficiently coupled to single-mode fibers.

b) Larger numerical apertures, as well as core diameters, facilitating easier coupling to
optical sources

c) Lower tolerance requirements on fiber connectors

Multimode step index fibers allow the propagation of a finite number of guided modes
along the channel. The number of guided modes is dependent upon the physical para-
meters (i.e. relative refractive index difference, core radius) of the fiber and the
wavelengths of the transmitted light which are included in the normalized

frequency V for the fiber. Mode propagation does not entirely cease below cutoff. Modes
may propagate as unguided or leaky modes which can travel considerable distances
along the fiber. Nevertheless, it is the guided modes which are of paramount importance
in optical fiber communications as these are confined to the fiber over its full length. that
the total number of guided modes or mode volume Ms for a step index fiber is related to
the V value for the fiber by the approximate expression




Which allows an estimate of the number of guided modes propagating in a particular
multimode step index fiber.

4. Graded index fibers

Graded index fibers do not have a constant refractive index in the core* but a decreasing
core index n(r) with radial distance from a maximum value ofnz1 at the axis to a constant
value n2 beyond the core radius a in the cladding. This index variation may be
represented as:

where A is the relative refractive index difference and a is the profile parameter which
gives the characteristic refractive index profile of the fiber core. Equation (1.50) which
Is a convenient method of expressing the refractive index profile of the fiber core as a
variation of a, allows representation of the step index profile when a = oo, a parabolic
profile when a = 2 and a triangular profile when o = 1. This range of refractive index
profiles is illustrated in Figure 1.15




The graded index profiles which at present produce the best results for multimode
optical propagation have a near parabolic refractive index profile core
with a ~~2. Fibers with such core index profiles are well established and consequently

when the term ‘graded index’ is used without qualification it usually refers to a fiber
with this profile.

For this reason in this section we consider the waveguiding properties of graded index
fiber with a parabolic refractive index profile core.

A multimode graded index fiber with a parabolic index profile core is illustrated in
Figure 1.16. It may be observed that the meridional rays shown appear to follow curved
paths through the fiber core. Using the concepts of geometric optics, the gradual
decrease in refractive index from the center of the core creates many refractions of the
rays as they are effectively incident on a large number or high to low index interfaces.
This mechanism is illustrated in Figure 1.17 where a ray is shown to be gradually
curved, with an ever- increasing angle of incidence, until the conditions for total internal
reflection are met, and the ray travels back towards the core axis, again being
continuously refracted.



Multimode graded index fibers exhibit far less intermodal dispersion than multimode
step index fibers due to their refractive index profile. Although many different modes are

excited in the graded index fiber, the different group velocities of the modes tend to be
normalized by the index grading. Again considering ray theory, the rays traveling close
to the fiber axis have shorter paths when compared with rays which travel

However, the near axial rays are transmitted through a region of higher refractive index
and therefore travel with a lower velocity than the more extreme rays. This compensates
for the shorter path lengths and reduces dispersion in the fiber. A similar situation exists




for skew rays which follow longer helical paths, as illus- trated in Figure 1.18. These
travel for the most part in the lower index region at greater speeds, thus giving the
samemechanism of mode transit time equalization. Hence, multi- mode graded index
fibers with parabolic or near-parabolic index profile cores have trans- mission
bandwidths which may be orders of magnitude greater than multimode step index fiber
bandwidths. Consequently, although they are not capable of the bandwidths attain- able
with single-mode fibers, such multimode graded index fibers have the advantage of large
core diameters (greater than 30 um) coupled with bandwidths suitable for long- distance
communication.

The parameters defined for step index fibers (i.e. NA, A, V') may be applied to graded
index fibers and give a comparison between the two fiber types. However, it must be
noted that for graded index fibers the situation is more complicated since the numerical
aperture is a function of the radial distance from the fiber axis. Graded index fibers,
therefore, accept less light than corresponding step index fibers with the same relative
refractive index difference.

Single-mode fiber

The advantage of the propagation of a single mode within an optical fiber is that the signal
dispersion caused by the delay differences between different modes in a multimode fiber
may be avoided. Multimode step index fibers do not lend themselves to the propagation of a
single mode due to the difficulties of maintaining single-mode operation within the fiber
when mode conversion (i.e. coupling) to other guided modes takes place at both input
mismatches and fiber imperfections.

Hence, for the transmission of a single mode the fiber must be designed to allow
propagation of only one mode, while all other modes are attenuated by leakage or
absorption. Following the preceding discussion of multimode fibers, this may be achieved
through choice of a suitable normalized frequency for the fiber. For single-mode operation,
only the fundamental LPo1 mode can exist. Hence the limit of single-mode operation
depends on the lower limit of guided propagation for the LP11 mode. The cutoff normalized
frequency for the LP11 mode in step index fibers occurs at V¢ = 2.405. Thus single-mode
propagation of the LPo1 mode in step index fibers is possible over the range:




as there is no cutoff for the fundamental mode. It must be noted that there are in fact two
modes with orthogonal polarization over this range, and the term single-mode applies to
propagation of light of a particular polarization. Also, it is apparent that the normalized
frequency for the fiber may be adjusted to within the range given in Eq. (1.51) by
reduction of the core radius.

1. Cutoff wavelength

It may be noted that single-mode operation only occurs above a theoretical cutoff
wavelength Ac given by:

whereVc is the cutoff normalized frequency. Hence Ac is the wavelength above which a
particular fiber becomes single-moded.

An effective cutoff wavelength has been defined by the ITU-T which is obtained from a
2 m length of fiber containing a single 14 cm radius loop. This definition was produced
because the first higher order LP11 mode is strongly affected by fiber length and
curvature near cutoff. Recommended cutoff wavelength values for primary coated fiber
range from 1.1 to 1.28 um for single-mode fiber designed for operation in the 1.3um
wavelength region in order to avoid modal noise and dispersion problems. Moreover,



practical transmission systems are generally operated close to the effective cutoff wave-
length in order to enhance the fundamental mode confinement, but sufficiently distant
from cutoff so that no power is transmitted in the second-order LP11 mode.

2. Mode-field diameter and spot size

Many properties of the fundamental mode are determined by the radial extent of its
electromagnetic field including losses at launching and jointing, micro bend losses,
waveguide dispersion and the width of the radiation pattern. Therefore, the MFD is an
Important parameter for characterizing single-mode fiber properties which takes into
account the wavelength-dependent field penetration into the fiber cladding. In this
context it is a better measure of the functional properties of single-mode fiber than the
core diameter. For step index and graded (near parabolic profile) single-mode fibers
operating near the cutoff wavelength Ac, the field is well approximated by a Gaussian
distribution. In this case the MFD is generally taken as the distance between the opposite
1/e = 0.37 field amplitude points and the power 1/e2 = 0.135 points in relation to the
corresponding values on the fiber axis.

Another parameter which is directly related to the MFD of a single-mode fiber is the
spot size (or mode-field radius) wo. Hence MFD = 2o, where wois the nominal half
width of the input excitation.



The MFD can therefore be regarded as the single- mode analog of the fiber core
diameter in multimode fibers. However, for many refractive index profiles and at typical
operating wavelengths the MFD is slightly larger than the single-mode fiber core
diameter.

Often, for real fibers and those with arbitrary refractive index profiles, the radial field
distribution is not strictly Gaussian and hence alternative techniques have been
proposed. However, the problem of defining the MFD and spot size for non-Gaussian
field dis- tributions is a difficult one and at least eight definitions exist.

3. Effective refractive index

The rate of change of phase of the fundamental LPo1 mode propagating along a straight
fiber is determined by the phase propagation constant . It is directly related to the
wavelength of the LPO1 mode A01 by the factor 2x, since 3 gives the increase in phase
angle per unit length. Hence:




Moreover, it is convenient to define an effective refractive index for single-mode fiber,
sometimes referred to as a phase index or normalized phase change coefficient neff, by
the ratio of the propagation constant of the fundamental mode to that of the vacuum
propagation constant:

Hence, the wavelength of the fundamental mode Ao1 is smaller than the vacuum wave-
length A by the factor 1/neff where:

It should be noted that the fundamental mode propagates in a medium with a refractive
index n(r) which is dependent on the distance r from the fiber axis. The effective
refractive index cantherefore be considered as an average over the refractive index of
this medium.

Within a normally clad fiber, not depressed-cladded fibers, at long wavelengths (i.e.
small V values) the MFD is large compared to the core diameter and hence the electric
field extends farinto the cladding region. In this case the propagation constant § will be
approximately equal to n2k (i.e. the cladding wave number) and the effective index will
be similar to the refractive indexof the cladding n2. Physically, most of the power is
transmitted in the cladding material.

At short wavelengths, however, the field is concentrated in the core region and the
propagation constant 3 approximates to the maximum wave numbernik. Following this
discussion, and as indicated previously, then the propagation constant in single-mode
fiber varies over the interval n2k< 8 <nik. Hence, the effective refractive index will vary
over the range n2<neff<ni. In addition, a relationship between the effective refractive
index and the normalized propagation constant b defined as:



may be obtained. Making use of the mathematical relation A2 — B2 = (A + B)(A — B), Eq.
(1.58) can be written in the form:

The dimensionless parameter b which varies between 0 and 1 is particularly useful in the
theory of single-mode fibers because the relative refractive index difference is very
small, giving only a small range for . Moreover, it allows a simple graphical
representation of results to be presented as illustrated by the characteristic shown in
Figure 2.32 of the normalized phase constant of  as a function of normalized

frequency V in a step index fiber.* It should also be noted that b(V) is a universal
function which does not depend explicitly on other fiber parameters.



4. Group delay and mode delay factor

The transit time or group delay tg for a light pulse propagating along a unit length of
fiber is the inverse of the group velocity vg . Hence:

The group index of a uniform plane wave propagating in a homogeneous medium has
been determined as:

However, for a single-mode fiber, it is usual to define an effective group index* Nge By:



Where vg is considered to be the group velocity of the fundamental fiber mode. Hence,
the specific group delay of the fundamental fiber mode becomes:

Moreover, the effective group index may be written in terms of the effective refractive
index neff defined in Eq. (1.56) as:

Furthermore, approximating the relative refractive index difference as (n1 — n2)/nz, for a

weakly guiding fiber where A<<I, we can use the approximation :



Where Ng1 and Ngz are the group indices for the fiber core and cladding regions

respectively. Substituting Eq. (1.65) for B into Eq. (1.67) and using the approximate
expression given in Eq. (1.66), we obtain the group delay per unit distance as:

The dispersive properties of the fiber core and the cladding are often about the same and
therefore the wavelength dependence of can be ignored. Hence the group delay can be
written as:




The initial term in Eq. (1.68) gives the dependence of the group delay on wavelength
caused when a uniform plane wave is propagating in an infinitely extended medium with
a refractive index which is equivalent to that of the fiber cladding. However, the second
term results from the waveguiding properties of the fiber only and is determined by the
mode delay factor d(\VVb)/dV, which describes the change in group delay caused by the
changes in power distribution between the fiber core and cladding. The mode delay
factor [Ref. 50] is a further universal parameter which plays a major part in the theory of
single- mode fibers. Its variation with normalized frequency for the fundamental mode
in a step index fiber is shown in Figure 1.21.

5. The Gaussian approximation

The field shape of the fundamental guided mode within a single-mode step index fiber
for two values of normalized frequency is displayed in Figure 1.22.

As may be expected, considering the discussion in Section 2.4.1, it has the form of a
Bessel function (Jo(r)) in the core region matched to a modified Bessel function (Ko(r))
in the cladding. Depending on the value of the normalized frequency, a significant
proportion of the modal power is propagated in the cladding region, as mentioned
earlier. Hence, even at the cutoff value (i.e. Vc) only about 80% of the power propagates
within the fiber core.



It may be observed from Figure 1.22 that the shape of the fundamental LPo1 mode is
similar to a Gaussian shape, which allows an approximation of the exact field
distribution by a Gaussian function.* The approximation may be investigated by writing
the scalar wave equation in the form:

where K is the propagation vector defined in Eq. (1.33) and n(x, y) is the refractive index
of the fiber, which does not generally depend on z, the coordinate along the fiber axis. It
should be noted that the time dependence exp(jot) has been omitted from the scalar
wave equation to give the reduced wave equationt in Eq. (1.69). This representation is
valid since the guided modes of a fiber with a small refractive index difference have one
predominant transverse field component, for example Ey. By contrast

Ex and the longitudinal component are very much smaller.

The field of the fundamental guided mode may therefore be considered as a scalar
quantity and need not be described by the full set of Maxwell’s equations. Hence Eq.
(1.69) may be written as:

where ¢ represents the dominant transverse electric field component.

The near-Gaussian shape of the predominant transverse field component of the funda-
mental mode has been demonstrated for fibers with a wide range of refractive index
distributions. This proves to be the case not only for the LPo1 mode of the step index
fiber, but also for the modes with fibers displaying arbitrary graded refractive index
distributions.

6. Equivalent step index method

Another strategy to obtain approximate values for the cutoff wavelength and spot size in
graded index single-mode fibers (or arbitrary refractive index profile fibers) is to define



an equivalent step index (ESI) fiber on which to model the fiber to be investigated.
Various methods have been proposed in the literature which commence from the
observation that the fields in the core regions of graded index fibers often appear similar
to the fields within step index fibers. Hence, as step index fiber characteristics are well
known, it is convenient to replace the exact methods for graded index single-mode fibers
by approximate techniques based on step index fibers. In addition, such ESI methods
allow the propagation characteristics of single-mode fibers to be represented by a few
parameters.

Several different suggestions have been advanced for the choice of the core radius aEesi,
and the relative index difference esi, of the ESI fiber which lead to good approximations
for the spot size (and hence joint and bend losses) for the actual graded index fiber. They
are all conceptually related to the Gaussian approximation in that they utilize the close
resemblance of the field distribution of the LPo1 mode to the Gaussian distribution
within single-mode fiber.



An early proposal for the ESI method involved transformation of the basic fiber
parameters following/:

where the subscript s is for the ESI fiber and X, Y are constants which must be
determined. However, these ESI fiber representations are only valid for a particular
value of normalized frequency V and hence there is a different X, Y pair for each
wavelength differences. Figure 1.23 compares the refractive index profiles and the
electric field distri- butions for two graded index fibres (o = 2, 4) and their ESI fibers. It
may be observed that their fields differ slightly only near the axis.




INTRODUCTION

1. Write the expression for the refractive index in graded index fibers.
n(r)= n1[1-2A(r/a)a]1/2 for O<=r<=a

n1(1-2A)1/2 ~ n1(1-A) =n2 for r>=a

r radial distance from fiber axis a core radius

nl refractive index at the core

n2 refractive index at the cladding

a  shape of the index profile

A index difference

2. Define Mode-field diameter.

The fundamental parameter of a single mode fiber is the mode-field diameter. This can
be determined from the mode field distribution of the fundamental LPol1 mode.

3. Give the expression for linearly polarized waves.

The electric or magnetic field of a train of plane polarized waves travelling in a direction
k can be represented in the general form

A(x,t) = eiAoexp[j(wt-k.x)]

With x=xex+yey+zez representing a general position vector and k=kxex+kyey+kzez
representing the wave propagation vector.

4. What is Snell’s law?

The relationship at the interface is known as Snell’s law and is given by
n1sin®1=n2 sin®2

5. What is the necessity of cladding for an optical fiber?

a) To provide proper light guidance inside the core

b) To avoid leakage of light from the fiber



c) To avoid mechanical strength for the fiber
d) To protect the core from scratches and other mechanical damages
6. What are the uses of optical fibers?

a) To transmit the information which are in the form of coded signals of the telephone
communication, computer data, etc.

b) To transmit the optical images (Example : Endoscopy)

c) Toact as a light source at the inaccessible places.

d) To act as sensors to do mechanical, electrical and magnetic measurements.
7. What is the principle used in the working of fibers as light guides?

The phenomenon of total internal reflection is used to guide the light in the optical fiber.
To get total internal reflection, the ray should travel from denser to rarer i.e. from core to
clad region of the fiber and the angle of incidence in the denser medium should be
greater than the critical angle of that medium.

8. What are step index and graded index fibers?

In the case of graded index fiber, the refractive index of a core is a constant and is larger
than the refractive index of the cladding. The light propagation is mainly by meridional
rays. In the case of graded index fiber (GRIN fiber) the refractive index of the core
varies parabolically from the center of the core having maximum refractive index to the
core-cladding interface having constant minimum refractive index. Here the light
propagation is by skew rays.

9. Why do we prefer step index single mode fiber for long distance communication?
Step index single mode fiber has

a) Low attenuation due to smaller core diameter

b) Higher bandwidth and

c) Very low dispersion.

10. Define relative refractive index difference.



Thus relative refractive index difference is the ratio between the refractive index
difference (of core and cladding) and refractive index of core.

11. What are meridional rays?

Meridional rays are the rays following Zig Zag path when they travel through fiber and
for every reflection it will cross the fiber axis.

12. What are skew rays?

Skew rays are the rays following the helical path around the fiber axis when they travel
through the fiber and they would not cross the fiber axis at any time.

13. What is V number of fiber or normalized frequency of fiber?

V number of fiber or normalized frequency of fiber is used to find the number of
propagating modes through the fiber.

V=2[]a (N.A) /A
In step index fiber number of modes propagating through the fiber=V2/2

Taking the two possible polarizations, total number of possible modes propagating
through the fiber = [V2/2]1*2=V2

14. What are the conditions for total internal reflection?
a) Light should travel from denser medium to rarer medium.

b) The angle of incidence should be greater than the critical angle of the denser
medium.

15. Give the relation between numerical aperture of skew rays and
meridional rays.

(N.A)skew = cos 7(N.A)meridional when the fiber is placed in air. Here v is the half of
the angular change in every reflection.



16. State Goos-Haenchen effect.

Goos-Haenchen effect states that there is a lateral shift of the reflected ray at the point of
incidence at the core-cladding interface. This lateral shift is called the Goos-Haenchen
shift.

17. When do you have phase shift during total internal reflection of light?

When the light ray travels from denser medium to rarer medium, if the angle of
incidence is greater than the critical angle of core medium, there is a phase shift for both
TE and TM waves.

18. What are hybrid modes? Give two examples.

Hybrid modes are the mixture of TE and TM modes that can be traveled through the
optical fiber.

Examples:

1.  HE1m modes in which |[Ez|>|Hz|

2. EH1m modes in which |[Hz|>|Ez|

19. Define cutoff wavelength of the fiber.

The cutoff wavelength is defined as the minimum value of wavelength that can be
transmitted through the fiber. The wavelengths greater than the cutoff wavelength can be
transmitted.

Acutoff =2[Ja(N.A)/V
20. Mention the rule distinguishing ‘mode’ and ‘order’.

The rule states that the smaller the modes propagating angle, the lower the order of the

mode. Hus the mode traveling precisely along the fiber’s central axis is zero mode.
21. What is fiber birefringence?

Imperfections in the fiber are common such as asymmetrical lateral stress, non-circular
imperfect variations of refractive index profile. These imperfections break the circular



symmetry of ideal fiber and mode propagate with different phase velocity and the
difference between their refractive index is called fiber birefringence.

B=ko(ny-nx)
22. Give the expression for numerical aperture in graded index fibers.
N.A(r)=N.A.(0) (1-(r/a)a)1/2 for r<=a

where N.A(0) = axial numerical aperture = (n12-n22)1/2 a is core radius and o is the
refractive index profile.

Glossary
Mode-field diameter.

The fundamental parameter of a single mode fiber is the mode-field diameter. This can
be determined from the mode field distribution of the fundamental LPol1 mode.

2. Snell’s law.

The relationship at the interface is known as Snell’s law and is given by
nisin®1=n2 sin®2

3. cladding for an optical fiber

a) To provide proper light guidance inside the core

b) To avoid leakage of light from the fiber

¢) To avoid mechanical strength for the fiber

d) To protect the core from scratches and other mechanical damages
4. Step index and graded index fibers.

In the case of graded index fiber, the refractive index of a core is a constant and is larger
than the refractive index of the cladding. The light propagation is mainly by meridional
rays. In the case of graded index fiber (GRIN fiber) the refractive index of the core
varies parabolically from the center of the core having maximum refractive index to the
core-cladding interface having constant minimum refractive index. Here the light
propagation is by skew rays.



5. Relative refractive index difference.

Thus relative refractive index difference is the ratio between the refractive index
difference (of core and cladding) and refractive index of core.

6. Meridional rays.

Meridional rays are the rays following ZigZag path when they travel through fiber and
for every reflection it will cross the fiber axis.

skew rays.

Skew rays are the rays following the helical path around the fiber axis when they travel
through the fiber and they would not cross the fiber axis at any time.

8. V number of fiber or normalized frequency of fiber.

V number of fiber or normalized frequency of fiber is used to find the number of
propagating modes through the fiber.

V=[2[]a/ A ] (N.A)
9. Goos-Haenchen effect.

Goos-Haenchen effect states that there is a lateral shift of the reflected ray at the point of
incidence at the core-cladding interface. This lateral shift is called the Goos-Haenchen
shift.

10. Hybrid modes.

Hybrid modes are the mixture of TE and TM modes that can be traveled through the
optical fiber.

Examples:
1.  HE1m modes in which |[Ez|>|Hz|
2. EH1m modes in which |Hz|>|Ez|



11. Cutoff wavelength of the fiber.

The cutoff wavelength is defined as the minimum value of wavelength that can be
transmitted through the fiber. The wavelengths greater than the cutoff wavelength can be
transmitted.

A cutoff = [2]Ja/ V] (N.A)
12. fiber birefringence.

Imperfections in the fiber are common such as asymmetrical lateral stress, non-circular
Imperfect variations of refractive index profile. These imperfections break the circular
symmetry of ideal fiber and mode propagate with different phase velocity and the
difference between their refractive index is called fiber birefringence.

B=ko(ny-nx)

UNIT -2
TRANSMISSION CHARACTERISTIC OF OPTICAL FIBER
Attenuation

The attenuation or transmission loss of optical fibers has proved to be one of the most
important factors in bringing about their wide acceptance in telecommunications. As
channel attenuation largely determined the maximum transmission distance prior to
signal restoration, optical fiber communications became especially attractive when the
transmission losses of fibers were reduced below those of the competing metallic
conductors (less than 5 dB km—1).

Signal attenuation within optical fibers, as with metallic conductors, is usually expressed
in the logarithmic unit of the decibel. The decibel, which is used for comparing two
power levels, may be defined for a particular optical wavelength as the ratio of the input
(transmitted) optical power Pi into a fiber to the output (received) optical power Po from
the fiber as:



This logarithmic unit has the advantage that the operations of multiplication and division
reduce to addition and subtraction, while powers and roots reduce to multiplication and
division. However, addition and subtraction require a conversion to numerical values
which may be obtained using the relationship:

In optical fiber communications the attenuation is usually expressed in decibels per unit
length (i.e. dB km-1) following:

where adB is the signal attenuation per unit length in decibels which is also referred to
as the fiber loss parameter and L is the fiber length. A number of mechanisms are
responsible for the signal attenuation within optical fibers. These mechanisms are
influenced by the material composition, the preparation and purification technique, and
the waveguide structure. They may be categorized within several major areas which
include material absorption, material scattering (linear and nonlinear scattering), curve
and microbending losses, mode coupling radiation losses and losses due to leaky modes.

Material absorption losses in silica glass fibers

Material absorption is a loss mechanism related to the material composition and the
fabrication process for the fiber, which results in the dissipation of some of the
transmitted optical power as heat in the waveguide. The absorption of the light may be
intrinsic (caused by the interaction with one or more of the major components of the
glass) or extrinsic (caused by impurities within the glass).



1. Intrinsic absorption

An absolutely pure silicate glass has little intrinsic absorption due to its basic material
structure in the near-infrared region. However, it does have two major intrinsic
absorption mechanisms at optical wavelengths which leave a low intrinsic absorption
window over the 0.8 to 1.7 um wavelength range, as illustrated in Figure 2.1, which
shows a possible optical attenuation against wavelength characteristic for absolutely
pure glass.

It may be observed that there is a fundamental absorption edge, the peaks of which are
centered in the ultraviolet wavelength region. This is due to the stimulation of electron
transitions within the glass by higher energy excitations.

The tail of this peak may extend into the window region at the shorter wavelengths, as
illustrated in Figure 2.1. Also in the infrared and far infrared, normally at wavelengths
above 7 um, fundamentals of absorption bands from the interaction of photons with
molecular vibrations within the glass occur.



These give absorption peaks which again extend into the window region. The strong
absorption bands occur due to oscillations of structural units such as Si—O (9.2 um), P—
O (8.1 ym), B-O (7.2 um) and Ge—O (11.0um) within the glass. Hence, above 1.5 pum
the tails of these largely far-infrared absorption peaks tend to cause most of the pure
glass losses.

However, the effects of both these processes may be minimized by suitable choice of
both core and cladding compositions. For instance, in some non oxide glasses such as
fluorides and chlorides, the infrared absorption peaks occur at much longer wavelengths
which are well into the far infrared (up to 50 pum), giving less attenuation to longer
wavelength transmission compared with oxide glasses.

2. Extrinsic absorption

In practical optical fibers prepared by conventional melting techniques, a major source
of signal attenuation is extrinsic absorption from transition metal element impurities.

Some of the more common metallic impurities found in glasses are shown in the Table
2.1, together with the absorption losses caused by one part in 109

It may be noted that certain of these impurities, namely chromium and copper, in their
worst valence state can cause attenuation in excess of 1 dB km—1 in the near-infrared
region. Transition element contamination may be reduced to acceptable levels (i.e. one



part in 1010) by glass refining techniques such as vapor-phase oxidation, which largely
eliminates the effects of these metallic impurities.

However, another major extrinsic loss mechanism is caused by absorption due to water
(as the hydroxyl or OH ion) dissolved in the glass. These hydroxyl groups are bonded
into the glass structure and have fundamental stretching vibrations which occur at
wavelengths between 2.7 and 4.2um depending on group position in the glass network.
The fundamental vibrations give rise to overtones appearing almost harmonically at
1.38, 0.95 and 0.72 um, as illustrated in Figure 2.2. This shows the absorption spectrum
for the hydroxyl group in silica.

Furthermore, combinations between the overtones and the fundamental SiO2 vibration
occur at 1.24, 1.13 and 0.88 um, completing the absorption spectrum shown in Figure
2.2.1t may also be observed in Figure 3.2 that the only significant absorption band in the
region below a wavelength of

I um is the second overtone at 0.95 um which causes attenuation of about 1 dB km—1
for one part per million (ppm) of hydroxyl.



At longer wavelengths the first overtone at 1.383 um and its sideband at 1.24 pm are
strong absorbers giving attenuation of about 2 dB km—1 ppm and 4 dB km—1 ppm
respectively. Since most resonances are sharply peaked, narrow windows exist in the

longer wavelength region around 1.31 and 1.55 pm which are essentially unaffected by
OH absorption once the impurity level has been reduced below one part in 107. This
situation is illustrated in Figure 2.3, which shows the attenuation spectrum of a low-loss
single-mode fiber produced in 1979. It may be observed that the lowest attenuation for
this fiber occurs at a wavelength of 1.55 um and is 0.2 dB km—1. Despite this value
approaching the minimum possible attenuation of around 0.18 dB km—1 at the 1.55 um
wavelength, it should be noted that the transmission loss of an ultra-low-loss pure silica
core fiber was more recently measured as 0.1484 dB km—1 at the slightly longer
wavelength of 1.57um.

Although in standard, modern single-mode fibers the loss caused by the primary OH
peak at 1.383 um has been reduced below 1 dB km—1, it still limits operation over

significant distances to the lower loss windows at 1.31 and 1.55 um.

Linear scattering losses



Linear scattering mechanisms cause the transfer of some or all of the optical power
contained within one propagating mode to be transferred linearly (proportionally to the
mode power) into a different mode. This process tends to result in attenuation of the
transmitted light as the transfer may be to a leaky or radiation mode which does not
continue to propagate within the fiber core, but is radiated from the fiber. It must be
noted that as with all linear processes, there is no change of frequency on scattering.

Linear scattering may be categorized into two major types: Rayleigh and Mie scattering.
Both result from the nonideal physical properties of the manufactured fiber which are
difficult and, in certain cases, impossible to eradicate at present.

1. Rayleigh scattering

Rayleigh scattering is the dominant intrinsic loss mechanism in the low-absorption
window between the ultraviolet and infrared absorption tails. It results from
inhomogeneities of a random nature occurring on a small scale compared with the
wavelength of the light.

These inhomogeneities manifest themselves as refractive index fluctuations and arise
from density and compositional variations which are frozen into the glass lattice on
cooling. The compositional variations may be reduced by improved fabrication, but the
index fluctuations caused by the freezing-in of density inhomogeneities are fundamental
and cannot be avoided.

The subsequent scattering due to the density fluctuations, which is in almost all

directions, produces an attenuation proportional to 1/A4 following the Rayleigh
scattering formula. For a single-component glass this is given by:

where YR is the Rayleigh scattering coefficient, A is the optical wavelength, n is the
refractive index of the medium, p is the average photoelastic coefficient, B¢ is the
isothermal compressibility at a fictive temperature TF, and K is Boltzmann’s constant.
The fictive temperature is defined as the temperature at which the glass can reach a state



of thermal equilibrium and is closely related to the anneal temperature. Furthermore, the
Rayleigh scattering coefficient is related to the transmission loss factor (transmissivity)
of the fiber following the relation:

whereL is the length of the fiber. It is apparent from Eqg. (2.4) that the fundamental
component of Rayleigh scattering is strongly reduced by operating at the longest
possible wavelength.

2. Mie scattering

Linear scattering may also occur at inhomogeneities which are comparable in size with
the guided wavelength. These result from the nonperfect cylindrical structure of the
waveguide and may be caused by fiber imperfections such as irregularities in the core—
cladding interface, core—cladding refractive index differences along the fiber length,
diameter fluctuations, strains and bubbles. When the scattering inhomogeneity size is
greater than A/10, the scattered intensity which has an angular dependence can be very
large.

The scattering created by such inhomogeneities is mainly in the forward direction and is
called Mie scattering. Depending upon the fiber material, design and manufacture, Mie
scattering can cause significant losses. The inhomogeneities may be reduced by:

v'-==removing imperfections due to the glass manufacturing process;

v'---carefully controlled extrusion and coating of the fiber;

v/ -=-increasing the fiber guidance by increasing the relative refractive index difference.
By these means it is possible to reduce Mie scattering to insignificant levels
Nonlinear scattering losses

Optical waveguides do not always behave as completely linear channels whose increase
In output optical power is directly proportional to the input optical power. Several



nonlinear effects occur, which in the case of scattering cause disproportionate
attenuation, usually at high optical power levels.

This nonlinear scattering causes the optical power from one mode to be transferred in
either the forward or backward direction to the same, or other modes, at a different
frequency. It depends critically upon the optical power density within the fiber and
hence only becomes significant above threshold power levels.

The most important types of nonlinear scattering within optical fibers are stimulated
Brillouin and Raman scattering, both of which are usually only observed at high optical
power densities in long single-mode fibers. These scattering mechanisms in fact give
optical gain but with a shift in frequency, thus contributing to attenuation for light
transmission at a specific wavelength. However, it may be noted that such nonlinear
phenomena can also be used to give optical amplification in the context of integrated
optical techniques

1. Stimulated Brillouin scattering

Stimulated Brillouin scattering (SBS) may be regarded as the modulation of light
through thermal molecular vibrations within the fiber. The scattered light appears as
upper and lower sidebands which are separated from the incident light by the
modulation frequency. The incident photon in this scattering process produces a
phonon* of acoustic frequency as well as a scattered photon. This produces an optical
frequency shift which varies with the scattering angle because the frequency of the
sound wave varies with acoustic wavelength.

The frequency shift is a maximum in the backward direction, reducing to zero in the
forward direction, making SBS a mainly backward process. As indicated previously,
Brillouin scattering is only significant above a threshold power density. Assuming that
the polarization state of the transmitted light is not maintained, it may be shown that the
threshold power PB is given by:



where d and A are the fiber core diameter and the operating wavelength, respectively,
both measured in micrometers, adB is the fiber attenuation in decibels per kilometer and
v is the source bandwidth (i.e. injection laser) in gigahertz. The expression given in Eq.
(2.6) allows the determination of the threshold optical power which must be launched
into a single-mode optical fiber before SBS occurs

2. Stimulated Raman scattering

Stimulated Raman scattering (SRS) is similar to SBS except that a high-frequency
optical phonon rather than an acoustic phonon is generated in the scattering process.
Also, SRS can occur in both the forward and backward directions in an optical fiber, and
may have an optical power threshold of up to three orders of magnitude higher than the
Brillouin threshold in a particular fiber.

Using the same criteria as those specified for the Brillouin scattering threshold given in
Eq. (2.6), it may be shown that the threshold optical power for SRS PR in a long single-
mode fiber is given by:

Fiber bend loss

Optical fibers suffer radiation losses at bends or curves on their paths. This is due to the
energy in the evanescent field at the bend exceeding the velocity of light in the cladding
and hence the guidance mechanism is inhibited, which causes light energy to be radiated
from the fiber. An illustration of this situation is shown in Figure 2.5. The part of the
mode which is on the outside of the bend is required to travel faster than that on the
inside so that a wavefront perpendicular to the direction of propagation is maintained.

Hence, part of the mode in the cladding needs to travel faster than the velocity of light in
that medium. As this is not possible, the energy associated with this part of the mode is
lost through radiation. The loss can generally be represented by a radiation attenuation
coefficient which has the form:



Where R is the radius of curvature of the fiber bend and c1, c2 are constants which are
independent of R. Furthermore, large bending losses tend to occur in multimode fibers at
a critical radius of curvature Rc which may be estimated from:

It may be observed from the expression given in Eq. (2.8) that potential macrobending
losses may be reduced by:

v/ ---designing fibers with large relative refractive index differences;

v/---operating at the shortest wavelength possible.

The above criteria for the reduction of bend losses also apply to single-mode fibers. One
theory, based on the concept of a single quasi-guided mode, provides an expression from
which the critical radius of curvature for a single-mode fiber Rcs can be estimated as



where Ac is the cutoff wavelength for the single-mode fiber. Hence again, for a specific
single-mode fiber (i.e. a fixed relative index difference and cutoff wavelength), the
critical wavelength of the radiated light becomes progressively shorter as the bend radius
IS decreased.

Mid-infrared and far-infrared transmission

In the near-infrared region of the optical spectrum, fundamental silica fiber attenuation is
dominated by Rayleigh scattering and multiphonon absorption from the infrared
absorption edge (see Figure 2.2). Therefore, the total loss decreases as the operational
transmission wavelength increases until a crossover point is reached around a
wavelength of 1.55 um where the total fiber loss again increases because at longer
wavelengths the loss is dominated by the phonon absorption edge. Since the near
fundamental attenuation limits for near-infrared silicate class fibers have been achieved,
more recently researchers have turned their attention to the mid-infrared (2 to 5 um) and
the far-infrared (8 to 12 um) optical wavelengths.

In order to obtain lower loss fibers it is necessary to produce glasses exhibiting longer
infrared cutoff wavelengths. Potentially, much lower losses can be achieved if the
transmission window of the material can be extended further into the infrared by
utilizing constituent atoms of higher atomic mass and if it can be drawn into fiber
exhibiting suitable strength and chemical durability. The reason for this possible loss
reduction is due to Rayleigh scattering which displays a A—4 dependence and hence
becomes much reduced as the wavelength is increased. For example, the scattering loss
is reduced by a factor of 16 when the optical wavelength is doubled.

Thus it may be possible to obtain losses of the order of 0.01 dB km—1 at a wavelength of
2.55 um, with even lower losses at wavelengths of between 3 and 5 um. Candidate
glass-forming systems for mid-infrared transmission are fluoride, fluoride—chloride,
chalcogenide and oxide.



In particular, oxide glasses such as Al203 (i.e. sapphire) offer a near equivalent
transmittance range to many of the fluoride glasses and have benefits of high melting
points, chemical inertness, and the ability to be readily melted and grown in air.
Chalcogenide glasses, which generally comprise one or more elements Ge, Si, As and
Sh, are capable of optical transmission in both the mid-infrared and far-infrared regions.

A typical chalcogenide fiber glass is therefore arsenide trisulfide (As2S3). However,
research activities into far-infrared transmission using chalcogenide glasses, halide
glasses, polycrystalline halide fibers (e.g. silver and thallium) and hollow glass
waveguides are primarily concerned with radiometry, infrared imaging, optical wireless,
optical sensing and optical power transmission rather than telecommunications

The loss spectrum for a single-crystal sapphire fiber which also transmits in the
midinfrared is also shown in Figure 2.6. Although they have robust physical properties,
including a Young’s modulus six times greater as well as a thermal expansion some ten
times higher than that of silica, these fibers lend themselves to optical power delivery
applications [Ref. 27], not specifically optical communications. Chalcogenide glasses



which have their lowest losses over both the mid- and far-infrared ranges are very stable,
durable and insensitive to moisture. Arsenic trisulfide fiber, being one of the simplest,
has a spectral range from 0.7 to around 6 um. Hence it has a cut off at long wavelength
significantly before the chalcogenide fibers containing heavier elements such as Te, Ge
and Se, an attenuation spectrum for the latter being incorporated in Figure 2.6. In
general, chalcogenide glass fibers have proved to be useful in areas such as optical
sensing, infrared imaging and for the production of fiber infrared lasers and amplifiers.

Dispersion

Dispersion of the transmitted optical signal causes distortion for both digital and analog
transmission along optical fibers. When considering the major implementation of optical
fiber transmission which involves some form of digital modulation, then dispersion
mechanisms within the fiber cause broadening of the transmitted light pulses as they
travel along the channel. The phenomenon is illustrated in Figure 2.7, where it may be
observed that each pulse broadens and overlaps with its neighbors, eventually becoming
indistinguishable at the receiver input. The effect is known as intersymbol interference
(ISI). Thus an increasing number of errors may be encountered on the digital optical
channel as the ISI becomes more pronounced. The error rate is also a function of the
signal attenuation on the link and the subsequent signal-to-noise ratio (SNR) at the
receiver.

For no overlapping of light pulses down on an optical fiber link the digital bit rate BT
must be less than the reciprocal of the broadened (through dispersion) pulse duration

(21).

Hence:

The conversion of bit rate to bandwidth in hertz depends on the digital coding format
used. For metallic conductors when a nonreturn-to-zero code is employed, the binary 1
level is held for the whole bit period t. In this case there are two bit periods in one



wavelength (i.e. 2 bits per second per hertz), as illustrated in Figure 2.8(a). Hence the
maximum bandwidth B is one-half the maximum data rate or:

However, when a return-to-zero code is considered, as shown in Figure 2.8(b), the
binary 1 level is held for only part (usually half ) of the bit period. For this signaling
scheme the data rate is equal to the bandwidth in hertz (i.e. 1 bit per second per hertz)
and thus BT = B.




The bandwidth B for metallic conductors is also usually defined by the electrical 3 Db
points (i.e. the frequencies at which the electric power has dropped to one-half of its
constant maximum value). However, when the 3 dB optical bandwidth of a fiber is
considered it is significantly larger than the corresponding 3 dB electrical bandwidth.
Hence, when the limitations in the bandwidth of a fiber due to dispersion are stated (i.e.
optical bandwidth Bopt), it is usually with regard to a return to zero code where the
bandwidth in hertz is considered equal to the digital bit rate. Within the context of
dispersion the bandwidths expressed in this chapter will follow this general criterion
unless otherwise stated.

when electro-optic devices and optical fiber systems are considered it is more usual to
statethe electrical 3 dB bandwidth, this being the more useful measurement when
interfacing an optical fiber link to electrical terminal equipment.

Intramodal Dispersion

Chromatic or intramodal dispersion may occur in all types of optical fiber and results
from the finite spectral linewidth of the optical source. Since optical sources do not emit
just a single frequency but a band of frequencies (in the case of the injection laser
corresponding to only a fraction of a percent of the center frequency, whereas for the



LED it is likely to be a significant percentage), then there may be propagation delay
differences between the different spectral components of the transmitted signal. This
causes broadening of each transmitted mode and hence intramodal dispersion. The delay
differences may be caused by the dispersive properties of the waveguide material
(material dispersion) and also guidance effects within the fiber structure (waveguide
dispersion).

1. Material dispersion

Pulse broadening due to material dispersion results from the different group velocities of
the various spectral components launched into the fiber from the optical source. It occurs
when the phase velocity of a plane wave propagating in the dielectric medium varies
nonlinearly with wavelength, and a material is said to exhibit material dispersion when
the second differential of the refractive index with respect to wavelength is not zero.

Hence the group delay is given by:

Where n1 is the refractive index of the core material. The pulse delay tm due to material
dispersion in a fiber of length L is therefore:

For a source with rms spectral width A and a mean wavelength A, the rms pulse
broadening due to material dispersion om may be obtained from the expansion of Eq.
(2.14)ina

Taylor series about A where:




As the first term in Eq. (2.15) usually dominates, especially for sources operating over
the 0.8t0 0.9

um wavelength range, then:

Hence the pulse spread may be evaluated by considering the dependence of tm on A,
where from Eq. (2.14):

Therefore, substituting the expression obtained in Eq. (2.17) into Eq. (2.16), the rms
pulse broadening due to material dispersion is given by:

2. Waveguide dispersion

The waveguiding of the fiber may also create chromatic dispersion. This results from the
variation in group velocity with wavelength for a particular mode. Considering the ray



theory approach, it is equivalent to the angle between the ray and the fiber axis varying
with wavelength which subsequently leads to a variation in the transmission times for
the rays, and hence dispersion. For a single mode whose propagation constant is 3, the
fiber exhibits waveguide dispersion when dzf/dA2!=0 . Multimode fibers, where the
majority of modes propagate far from cutoff, are almost free of waveguide dispersion
and it is generally negligible compared with material dispersion (=0.1 to 0.2 ns/ km).

However, with single-mode fibers where the effects of the different dispersion
mechanisms are not easy to separate, waveguide dispersion may be significant.

Intermodal dispersion

Pulse broadening due to intermodal dispersion (sometimes referred to simply as modal
or mode dispersion) results from the propagation delay differences between modes
within a multimode fiber. As the different modes which constitute a pulse in a
multimode fiber travel along the channel at different group velocities, the pulse width at
the output is dependent upon the transmission times of the slowest and fastest modes.
This dispersion mechanism creates the fundamental difference in the overall dispersion
for the three types of fiber. Thus multimode step index fibers exhibit a large amount of
intermodal dispersion which gives the greatest pulse broadening. However, intermodal
dispersion in multimode fibers may be reduced by adoption of an optimum refractive
index profile which is provided by the near-parabolic profile of most graded index
fibers.

Hence, the overall pulse broadening in multimode graded index fibers is far less than
that obtained in multimode step index fibers (typically by a factor of 100). Thus graded
index fibers used with a multimode source give a tremendous bandwidth advantage over
multimode step index fibers. Under purely single-mode operation there is no intermodal
dispersion and therefore pulse broadening is solely due to the intramodal dispersion
mechanisms. In theory, this is the case with single-mode step index fibers where only a
single mode is allowed to propagate. Hence they exhibit the least pulse broadening and
have the greatest possible bandwidths, but in general are only usefully operated with
single-mode sources.



In order to obtain a simple comparison for intermodal pulse broadening between
multimode step index and multimode graded index fibers, it is useful to consider the
geometric optics picture for the two types of fiber.

1. Multimode step index fiber

Using the ray theory model, the fastest and slowest modes propagating in the step index
fiber may be represented by the axial ray and the extreme meridional ray (which is
incident at the core—cladding interface at the critical angle ¢c) respectively. The paths
taken by these two rays in a perfectly structured step index fiber are shown in Figure 2.9.
The delay difference between these two rays when traveling in the fiber core allows
estimation of the pulse broadening resulting from intermodal dispersion within the fiber.
As both rays are traveling at the same velocity within the constant refractive index fiber
core, then the delay difference is directly related to their respective path lengths within
the fiber. Hence the time taken for the axial ray to travel along a fiber of length L gives
the minimum delay time TMin and:

where n1 is the refractive index of the core and c is the velocity of light in a vacuum.

The extreme meridional ray exhibits the maximum delay time TMax where:

Using Snell’s law of refraction at the core—cladding interface following Eq. (2.2):

where n2 is the refractive index of the cladding. Furthermore, substituting into Eq. (2.21)
for coso gives:



The delay difference 8Ts between the extreme meridional ray and the axial ray may be
obtained by:

where A is the relative refractive index difference. However, when A<< 1, then from the
definition given by Eq. (2.9), the relative refractive index difference may also be given
approximately by:



where NA is the numerical aperture for the fiber. The approximate expressions for the
delay difference given in Eqs (2.27) and (2.28) are usually employed to estimate the
maximum pulse broadening in time due to intermodal dispersion in multimode step
index fibers. Again considering the perfect step index fiber, another useful quantity with
regard to intermodal dispersion on an optical fiber link is the rms pulse broadening
resulting from this dispersion mechanism along the fiber. When the optical input to the
fiber is a pulse pi(t) of unit area, as illustrated in Figure 2.10, then

It may be noted that pi(t) has a constant amplitude of 1/5Ts over the range:




The rms pulse broadening at the fiber output due to intermodal dispersion for the
multimode step index fiber os (i.e. the standard deviation) may be given in terms of the
variance cs2:

Where M1 is the first temporal moment which is equivalent to the mean value of the
pulse and M2, the second temporal moment, is equivalent to the mean square value of
the pulse.

Hence:

The mean value M1 for the unit input pulse of Figure 2.10 is zero, and assuming this is
maintained for the output pulse, then from Egs (2.30) and (2.32):

Integrating over the limits of the input pulse (Figure 3.12) and substituting for pi(t) in
Eq. (2.33) over this range gives:



Equation (2.35) allows estimation of the rms impulse response of a multimode step
index fiber if it is assumed that intermodal dispersion dominates and there is a uniform
distribution of light rays over the range 0<6<0a The pulse broadening is directly
proportional to the relative refractive index difference A and the length of the fiber L.
The latter emphasizes the bandwidth—length trade-off that exists, especially with
multimode step index fibers, and which inhibits their use for wideband long-haul
(between repeaters) systems. Furthermore, the pulse broadening is reduced by reduction
of the relative refractive index difference A for the fiber.

Intermodal dispersion may be reduced by propagation mechanisms within practical
fibers. For instance, there is differential attenuation of the various modes in a step index
fiber. This is due to the greater field penetration of the higher order modes into the
cladding of the waveguide. These slower modes therefore exhibit larger losses at any
core—cladding irregularities, which tends to concentrate the transmitted optical power
into the faster lower order modes. Thus the differential attenuation of modes reduces
intermodal pulse broadening on a multimode optical link.

Another mechanism which reduces intermodal pulse broadening in nonperfect (i.e.
practical) multimode fibers is the mode coupling or mixing. The coupling between
guided modes transfers optical power from the slower to the faster modes, and vice
versa. Hence, with strong coupling the optical power tends to be transmitted at an
average speed, which is the mean of the various propagating modes. This reduces the
intermodal dispersion on the link and makes it advantageous to encourage mode
coupling within multimode fibers.



The expression for delay difference given in Eq. (2.27) for a perfect step index fiber may
be modified for the fiber with mode coupling among all guided modes to:

2. Multimode graded index fiber

Intermodal dispersion in multimode fibers is minimized with the use of graded index
fibers. Hence, multimode graded index fibers show substantial bandwidth improvement
over multimode step index fibers. The reason for the improved performance of graded
index fibers may be observed by considering the ray diagram for a graded index fiber
shown in Figure 2.11. The fiber shown has a parabolic index profile with a maximum at
the core axis, as illustrated in Figure 2.11(a). Analytically, the index profile is given by:

Figure 2.11(b) shows several meridional ray paths within the fiber core. It may be
observed that apart from the axial ray, the meridional rays follow sinusoidal trajectories
of different path lengths which result from the index grading. However, the local group
velocity is inversely proportional to the local refractive index and therefore the longer
sinusoidal paths are compensated for by higher speeds in the lower index medium away
from the axis.



Hence there is an equalization of the transmission times of the various trajectories
towards the transmission time of the axial ray which travels exclusively in the high-
index region at the core axis, and at the slowest speed. As these various ray paths may be
considered to represent the different modes propagating in the fiber, then the graded
profile reduces the disparity in the mode transit times.

The dramatic improvement in multimode fiber bandwidth achieved with a parabolic or
near-parabolic refractive index profile is highlighted by consideration of the reduced
delay difference between the fastest and slowest modes for this graded index fiber 3Tg.
Using a ray theory approach the delay difference is given by:

However, a more rigorous analysis using electromagnetic mode theory gives an absolute
temporal width at the fiber output of :

which corresponds to an increase in transmission time for the slowest mode of A2/8 over
the fastest mode. The expression given in Eq. (2.39) does not restrict the bandwidth to
pulses with time slots corresponding to 6Tg as 70% of the optical power is concentrated
in the first half of the interval. Hence the rms pulse broadening is a useful parameter for



assessment of intermodal dispersion in multimode graded index fibers. It may be shown
that the rms pulse broadening of a near-parabolic

index profile graded index fiber og is reduced compared with similar broadening for the
corresponding step index fiber os (i.e. with the same relative refractive index difference)
following

where D is a constant between 4 and 10 depending on the precise evaluation and the
exact optimum profile chosen.

The best minimum theoretical intermodal rms pulse broadening for a graded index fiber
with an optimum characteristic refractive index profile for the core a.op of

Overall fiber dispersion

1. Multimode fibers

The overall dispersion in multimode fibers comprises both chromatic and intermodal
terms. The total rms pulse broadening oT is given (see Appendix D) by:

where oc is the intramodal or chromatic broadening and on is the intermodal broadening
caused by delay differences between the modes (i.e. os for multimode step index fiber
and og for multimode graded index fiber). The chromatic term oc consists of pulse
broadening due to both material and waveguide dispersion. However, since waveguide



dispersion is generally negligible compared with material dispersion in multimode
fibers, thencc =om.

2. Single-mode fibers

The pulse broadening in single-mode fibers results almost entirely from chromatic or
intramodal dispersion as only a single-mode is allowed to propagate.* Hence the
bandwidth is limited by the finite spectral width of the source. Unlike the situation in
multimode fibers, the mechanisms giving chromatic dispersion in single-mode fibers
tend to be interrelated in a complex manner. The transit time or specific group delay og
for a light pulse propagating along a unit length of single-mode fiber may be given as:

where c is the velocity of light in a vacuum, f is the propagation constant for a mode
within the fiber core of refractive index nl and k is the propagation constant for the
mode in a vacuum.

The total first-order dispersion parameter or the chromatic dispersion of a single-mode
fiber, DT, is given by the derivative of the specific group delay with respect to the
vacuum wavelength A Jas:

In common with the material dispersion parameter it is usually expressed in units of ps
nm—1 km—1. When the variable A is replaced by o, then the total dispersion parameter
becomes:

The fiber exhibits intramodal dispersion when [ varies nonlinearly with
wavelength. f may be expressed in terms of the relative refractive index difference A and
the normalized propagation constant b as



The rms pulse broadening caused by chromatic dispersion down a fiber of length L is
given by the derivative of the group delay with respect to wavelength as [Ref. 45]:

where oA is the source rms spectral linewidth centered at a wavelength 1. When Eq.
(2.44) is substituted into Eq. (2.45), detailed calculation of the first and second
derivatives with respect to k gives the dependence of the pulse broadening on the fiber

material’s properties and the normalized propagation constant b. This gives rise to three
interrelated effects which involve complicated cross-product terms. However, the final
expression may be separated into three composite dispersion components in such a way
that one of the effects dominates each terms. The dominating effects are as follows:

v'+-=The material dispersion parameter DM defined by A/c | dn/dA| where n = nl or n2
for the core or cladding respectively.

v'+=-The waveguide dispersion parameter DW, which may be obtained from Eq. (3.47)
by substitution from Eq. (2.114) for tg, is defined as:

where V is the normalized frequency for the fiber. Since the normalized propagation
constant b for a specific fiber is only dependent on V, then the normalized waveguide
dispersion coefficient Vd2(Vb)/dV2 also depends on V. This latter function is another
universal parameter which plays acentral role in the theory of singlemode fibers.

A profile dispersion parameter DP which is proportional to dA/dA



This situation is different from multimode fibers where the majority of modes propagate
far from cutoff and hence most of the power is transmitted in the fiber core. In the
multimode case the composite dispersion components may be simplified and separated
into two chromatic terms which depend on either material or waveguide dispersion.
Also, especially when considering step index multimode fibers, the effect of profile
dispersion is negligible. Strictly speaking, in single-mode fiber with a power-law
refractive index profile the composite dispersion terms should be employed.
Nevertheless, it is useful to consider the total first-order dispersion DT in a practical
single-mode fiber as comprising:

Polarization

Cylindrical optical fibers do not generally maintain the polarization state of the light
input for more than a few meters, and hence for many applications involving optical
fiber transmission some form of intensity modulation of the optical source is utilized.
The optical signal is thus detected by a photodiode which is insensitive to optical
polarization or phase of the lightwave within the fiber. Nevertheless, systems and
applications have been investigated which could require the polarization states of the
input light to be maintained over significant distances, and fibers have been designed for
this purpose. These fibers are single mode and the maintenance of the polarization state
Is described in terms of a phenomenon known as fiber birefringence.

1. Fiber birefringence

Single-mode fibers with nominal circular symmetry about the core axis allow the
propagation of two nearly degenerate modes with orthogonal polarizations. They are
therefore bimodal supporting HEx11 and HEy11 modes where the principal

axes x and y are determined by the symmetry elements of the fiber cross section. Hence
in an optical fiber with an ideal optically circularly symmetric core both polarization
modes propagate with identical velocities.



Manufactured optical fibers, however, exhibit some birefringence resulting from
differences in the core geometry (i.e. ellipticity) resulting from variations in the internal
and external stresses, and fiber bending. The fiber therefore behaves as a birefringent
medium due to the difference in the effective refractive indices, and hence phase
velocities, for these two orthogonally polarized modes. The modes therefore have
different propagation constants Bx and By which are dictated by the anisotropy of the
fiber cross section. In this case x and By are the propagation constants for the slow
mode and the fast mode respectively. When the fiber cross-section is independent of the
fiber length L in the z direction, then the modal birefringenceBF for the fiber is given by:

Where A is the optical wavelength. Light polarized along one of the principal axes will
retain its polarization for all L. The difference in phase velocities causes the fiber to
exhibit a linear retardation ®(z) which depends on the fiber length L in the z direction
and is given by:

assuming that the phase coherence of the two mode components is maintained. The
phase coherence of the two mode components is achieved when the delay between the
two transit times is less than the coherence time of the source. the coherence time for the
source is equal to the reciprocal of the uncorrelated source frequency width (1/5f).

It may be shown that birefringent coherence is maintained over a length of fiber Lbc (i.e.
coherence length) when:

wherec is the velocity of light in a vacuum and o is the source linewidth.



However, when phase coherence is maintained (i.e. over the coherence length) Eq.
(2.58) leads to a polarization state which is generally elliptical but which varies
periodically along the fiber. This situation is illustrated in Figure 2.14(a) where the
incident linear polarization which is at 45° with respect to the x axis becomes circular
polarization at ® =n/2 and linear again at @ =n. The process continues through another

circular polarization at ®= 3n/2 before returning to the initial linear polarization at @ =
27. The characteristic length LB for this process corresponding to the propagation
distance for which a 2z phase difference accumulates between the two modes is known

as the beat length. It is given by:



Typical single-mode fibers are found to have beat lengths of a few centimeters, and the
effect may be observed directly within a fiber via Rayleigh scattering with use of a
suitable visible source (e.g. He—Ne laser). It appears as a series of bright and dark bands
with a period corresponding to the beat length, as shown in Figure 2.14.(b).

The modal birefringence BF may be determined from these observations of beat length.
In a nonperfect fiber various perturbations along the fiber length such as strain or
variations in the fiber geometry and composition lead to coupling of energy from one
polarization to the other. These perturbations are difficult to eradicate as they may easily
occur in the fiber manufacture and cabling. The energy transfer is at a maximum when
the perturbations have a period A, corresponding to the beat length, and defined by:

However, the cross-polarizing effect may be minimized when the period of the
perturbations is less than a cutoff period Ac (around 1 mm). Hence polarization-
maintaining fibers may be designed by either:

(a) high (large) birefringence: the maximization of the fiber birefringence, may be
achieved by reducing the beat length LB to around 1 mm or less; or

(b) low (small) birefringence: the minimization of the polarization coupling
perturbations with a period of A. This may be achieved by increasing Ac giving a large
beat length of around 50 m or more.



2. Polarization-maintaining fibers

Although the polarization state of the light arriving at a conventional photodetector is
not distinguished and hence of little concern, it is of considerable importance in coherent
lightwave systems in which the incident signal is superimposed on the field of a local
oscillator (see Section 13.3). Moreover, interference and delay differences between the
orthogonally polarized modes in birefringent fibers may cause polarization modal noise
and PMD respectively (see Section 3.13.2). Finally, polarization is also of concern when
a single-mode fiber is coupled to a modulator or other waveguide device (see Section
11.4.2) that can require the light to be linearly polarized for efficient operation. Hence,
there are several reasons why it may be desirable to use fibers that will permit light to
pass through while retaining its state of polarization. Such polarization-maintaining
(PM) fibers

can be classified into two major groups: namely, high-birefringence (HB) and low-
birefringence (LB) fibers.

The birefringence of conventional single-mode fibers is in the range BF = 10-6 to 10-5.
An HB fiber requires BF > 10-5 and a value better than 10-4 is a minimum for
polarization maintenance. HB fibers can be separated into two types which are generally
referred to as two-polarization fibers and single-polarization fibers. In the latter case, in
order to allow only one polarization mode to propagate through the fiber, a cutoff
condition is imposed on the other mode by utilizing the difference in bending loss
between the two polarization modes.



The various types of PM fiber, classified in terms of their linear polarization
maintenance, are shown in Figure 2.16

Nonlinear effects

Usually lightwaves or photons transmitted through a fiber have little interaction with
each other, and are not changed by their passage through the fiber (except for absorption
and scattering). There are exceptions, however, arising from the interactions between
lightwaves and the material transmitting them, which can affect optical signals. These
processes are normally referred to as nonlinear effects or phenomena because their
strength typically depends on the square (or some higher power) of the optical intensity.
Hence nonlinear effects are weak at low powers but they can become much stronger at
high optical intensities. This situation can result either when the power is increased, or
when it is concentrated in a small area such as the core of a single-mode optical fiber.



Although the nonlinear effects in optical fibers are small, they accumulate as light passes
through many kilometers of single-mode fiber. The small core diameters, together with
the long transmission distances that may be obtained with these fibers, have enabled the
occurrence of nonlinear phenomena at power levels of a few milliwatts which are well
within the capability of semiconductor lasers. Furthermore, the optical power levels
become much larger when wavelength division multiplexing packs many signal
channels into one single-mode fiber such that the overall power level is the summation
of the individual channel optical powers.

There are two broad categories of nonlinear effects that can be separated based on their
characteristics: namely, scattering and Kerr effects.

Fiber alignment and joint loss

A major consideration with all types of fiber—fiber connection is the optical loss
encountered at the interface. Even when the two jointed fiber ends are smooth and
perpendicular to the fiber axes, and the two fiber axes are perfectly aligned, a small
proportion of the light may be reflected back into the transmitting fiber causing
attenuation at the joint. This phenomenon, known as Fresnel reflection, is associated
with the step changes in refractive index at the jointed interface (i.e. glass—air—glass).
The magnitude of this partial reflection of the light transmitted through the interface
may be estimated using the classical Fresnel formula for light of normal incidence and is
given by

where r is the fraction of the light reflected at a single interface, nl is the refractive
index of the fiber core and n is the refractive index of the medium between the two
jointed fibers (i.e. for air n =1). However, in order to determine the amount of light
reflected at a fiber joint, Fresnel reflection at both fiber interfaces must be taken into
account. The loss in decibels due to Fresnel reflection at a single interface is given by:




Hence, using the relationships given in Eqgs (2.59) and (2.60) it is possible to determine
the optical attenuation due to Fresnel reflection at a fiber—fiber joint.

It is apparent that Fresnel reflection may give a significant loss at a fiber joint even when
all other aspects of the connection are ideal. However, the effect of Fresnel reflection at
a fiber—fiber connection can be reduced to a very low level through the use of an index-
matching fluid in the gap between the jointed fibers. When the index-matching fluid has
the same refractive index as the fiber core, losses due to Fresnel reflection are in theory
eradicated. Unfortunately, Fresnel reflection is only one possible source of optical loss at
a fiber joint. A potentially greater source of loss at a fiber—fiber connection is caused by
misalignment of the two jointed fibers. In order to appreciate the development and
relative success of various connection techniques it is useful to discuss fiber alignment
in greater detail.

Any deviations in the geometrical and optical parameters of the two optical fibers which
are jointed will affect the optical attenuation (insertion loss) through the connection. It is
not possible within any particular connection technique to allow for all these variations.

Hence, there are inherent connection problems when jointing fibers with, for instance
v'---different core and/or cladding diameters;

v’ ---different numerical apertures and/or relative refractive index differences;

v ---different refractive index profiles;
v

---fiber faults (core ellipticity, core concentricity, etc.).



The losses caused by the above factors together with those of Fresnel reflection are
usually referred to as intrinsic joint losses. The best results are therefore achieved with
compatible (same) fibers which are manufactured to the lowest tolerance.

In this case there is still the problem of the quality of the fiber alignment provided by the
jointing mechanism. Examples of possible misalignment between coupled compatible
optical fibers are illustrated in Figure 2.17. It is apparent that misalignment may occur in
three dimensions: the separation between the fibers (longitudinal misalignment), the
offset perpendicular to the fiber core axes (lateral/radial/ axial misalignment) and the
angle between the core axes (angular misalignment).



Optical losses resulting from these three types of misalignment depend upon the fiber
type, core diameter and the distribution of the optical power between the propagating
modes. Examples of the measured optical losses due to the various types of
misalignment are shown in Figure 2.18. Figure 2.18(a) shows the attenuation
characteristic for both longitudinal and lateral misalignment of a graded index fiber of
50 pum core diameter.

It may be observed that the lateral misalignment gives significantly greater losses per
unit displacement than the longitudinal misalignment. For instance, in this case a lateral
displacement of 10 pum gives about 1 dB insertion loss whereas a similar longitudinal
displacement gives an insertion loss of around 0.1 dB. Figure 2.18(b) shows the
attenuation characteristic for the angular misalignment of two multimode step index
fibers with numerical apertures of 0.22 and 0.3. An insertion loss of around 1 dB is
obtained with angular misalignment of 4° and 5° for the NA =0.22 and NA=0.3 fibers
respectively.

It may also be observed in Figure 2.18(b) that the effect of an index-matching fluid in
the fiber gap causes increased losses with angular misalignment. Therefore, it is clear
that relatively small levels of lateral and/or angular misalignment can cause significant
attenuation at a fiber joint. This is especially the case for fibers of small core diameter
(less than 150 um) which are currently employed for most telecommunication purposes.

1. Multimode fiber joints

Theoretical and experimental studies of fiber misalignment in optical fiber connections
allow approximate determination of the losses encountered with the various
misalignments of different fiber types. We consider here some of the expressions used to
calculate losses due to lateral and angular misalignment of optical fiber joints.
Longitudinal misalignment is not discussed in detail as it tends to be the least important
effect and may be largely avoided in fiber connection.

Both groups of workers claim good agreement with experimental results, which is
perhaps understandable when considering the number of variables involved in the
measurement. Also, all groups predict higher losses for fibers with larger numerical



apertures, which is consistent with intuitive considerations (i.e. the larger the numerical
aperture, the greater the spread of the output light and the higher the optical loss at a
longitudinally misaligned joint).

Theoretical expressions for the determination of lateral and angular misalignment losses
are by no means definitive, although in all cases they claim reasonable agreement with
experimental results. However, experimental results from different sources tend to vary
(especially for angular misalignment losses) due to difficulties of measurement. It is
therefore not implied that the expressions given in the text are necessarily the most
accurate, as at present the choice appears somewhat arbitrary. Lateral misalignment
reduces the overlap region between the two fiber cores. Assuming uniform excitation of
all the optical modes in a multimode step index fiber, the overlapped area between both
fiber cores approximately gives the lateral coupling efficiency plat. Hence, the lateral
coupling efficiency for two similar step index fibers may be written as

where nl is the core refractive index, n is the refractive index of the medium between
the fibers, y is the lateral offset of the fiber core axes, and a is the fiber core radius. The
lateral misalignment loss in decibels may be determined using:

The predicted losses obtained using the formulas given in Eqs (2.61) and (2.62) are
generally slightly higher than the measured values due to the assumption that all modes
are equally excited. This assumption is only correct for certain cases of optical fiber
transmission. Also, certain authors assume index matching and hence no Fresnel
reflection, which makes the first term in Eq. (2.61) equal to unity (as n1/n = 1). This
may be valid if the two fiber ends are assumed to be in close contact (i.e. no air gap in
between) and gives lower predicted losses. Nevertheless, bearing in mind these possible
inconsistencies, useful estimates for the attenuation due to lateral misalignment of
multimode step index fibers may be obtained.



Lateral misalignment loss in multimode graded index fibers assuming a uniform
distribution of optical power throughout all guided modes was calculated by Gloge. He
estimated that the lateral misalignment loss was dependent on the refractive index

gradient a for small lateral offset and may be obtained from:

A further estimate including the leaky modes gave a revised expression for the lateral
misalignment loss given in Eq. (2.64) of 0.75(y/a). This analysis was also extended to
step index fibers (where o = ) and gave lateral misalignment losses of 0.64(y/a) and
0.5(y/a) for the cases of guided modes only and both guided plus leaky modes
respectively.

Factors causing fiber—fiber intrinsic losses were listed in previous Section; the major
ones comprising a mismatch in the fiber core diameters, a mismatch in the fiber
numerical apertures and differing fiber refractive index profiles are illustrated in Figure
2.19. Connections between multimode fibers with certain of these parameters being
different can be quite common, particularly when a pigtailed optical source is used, the
fiber pigtail of which has different characteristics from the main transmission fiber.
Moreover, as indicated previously, diameter variations can occur with the same fiber

type.
Assuming all the modes are equally excited in a multimode step or graded index fiber,

and that the numerical apertures and index profiles are the same, then the loss resulting
from a mismatch of core diameters (see Figure 2.19(a)) is given by:



where al and a2 are the core radii of the transmitting and receiving fibers respectively. It
may be observed from Eq. (2.66) that no loss is incurred if the receiving fiber has a
larger core diameter than the transmitting one. In addition, only a relatively small loss
(0.09 dB) is obtained when the receiving fiber core diameter is 1% smaller than that of
the transmitting fiber.

When the transmitting fiber has a higher numerical aperture than the receiving fiber,
then some of the emitted light rays will fall outside the acceptance angle of the receiving
fiber and they will therefore not be coupled through the joint. Again assuming a uniform
modal power distribution, and fibers with equivalent refractive index profiles and core

diameters, then the loss caused by a mismatch of numerical apertures (see Figure
2.19(b))



2. Single-mode fiber joints

Misalignment losses at connections in single-mode fibers have been theoretically
considered by Marcuse and Gambling et al. The theoretical analysis which was
instigated by Marcuse is based upon the Gaussian or near-Gaussian shape of the modes
propagating in single-mode fibers regardless of the fiber type (i.e. step index or graded
index). Further development of this theory by Gambling etal. gave simplified formulas
for both the lateral and angular misalignment losses at joints in single mode fibers. In the
absence of angular misalignment Gambling et al. calculated that the loss Tl due to lateral
offset y was given by:




where o is the normalized spot size of the fundamental mode.* However, the normalized
spot size for the LPO1 mode (which corresponds to the HE mode) may be obtained from
the empirical formula:

where o is the spot size in um, a is the fiber core radius and V is the normalized
frequency for the fiber. Alternatively, the insertion loss Ta caused by an angular
misalignment 6(in radians) at a joint in a single-mode fiber may be given by

wherenl is the fiber core refractive index and NA is the numerical aperture of the fiber.
It must be noted that the formulas given in Egs (2.69) and (2.70) assume that the spot
sizes of the modes in the two coupled fibers are the same. Gambling et al. also derived a
somewhat complicated formula which gave a good approximation for the combined
losses due to both lateral and angular misalignment at a fiber joint. However, they
indicate that for small total losses (less than 0.75 dB) a reasonable approximation is
obtained by simply combining Egs (2.68) and (2.70).

Assuming that no losses are present due to the extrinsic factors, the intrinsic coupling
loss is given by

where ©01 and 02 are the spot sizes of the transmitting and receiving fibers
respectively. Equation (2.71) therefore enables the additional coupling loss resulting
from mode-field diameter mismatch between two single-mode fibers to be calculated.

Fiber splices



A permanent joint formed between two individual optical fibers in the field or factory is
known as a fiber splice. Fiber splicing is frequently used to establish long-haul optical
fiber links where smaller fiber lengths need to be joined, and there is no requirement for
repeated connection and disconnection. Splices may be divided into two broad
categories depending upon the splicing technique utilized. These are fusion splicing or
welding and mechanical splicing.

Fusion splicing is accomplished by applying localized heating (e.g. by a flame or an
electric arc) at the interface between two butted, prealigned fiber ends causing them to
soften and fuse. Mechanical splicing, in which the fibers are held in alignment by some
mechanical means, may be achieved by various methods including the use of tubes
around the fiber ends (tube splices) or VV-grooves into which the butted fibers are placed
(groove splices). All these techniques seek to optimize the splice performance (i.e.
reduce the insertion loss at the joint) through both fiber end preparation and alignment of
the two joint fibers. Typical average splice insertion losses for multimode fibers are in
the range 0.1 to 0.2 dB which is generally a better performance than that exhibited by
demountable connections.

It may be noted that the insertion losses of fiber splices are generally much less than the
possible Fresnel reflection loss at a butted fiber—fiber joint. This is because there is no
large step change in refractive index with the fusion splice as it forms a continuous fiber
connection, and some method of index matching (e.g. a fluid) tends to be utilized with
mechanical splices



A requirement with fibers intended for splicing is that they have smooth and square end
faces. In general this end preparation may be achieved using a suitable tool which
cleaves the fiber as illustrated in Figure 2.20. This process is often referred to as scribe
and break or score and break as it involves the scoring of the fiber surface under tension
with a cutting tool (e.g. sapphire, diamond, tungsten carbide blade). The surface scoring
creates failure as the fiber is tensioned and a clean, reasonably square fiber end can be
produced.

Figure 2.20 illustrates this process with the fiber tensioned around a curved mandrel.
However, straight pull, scribe and break tools are also utilized, which arguably give
better results.

1. Fusion splices

The fusion splicing of single fibers involves the heating of the two prepared fiber ends to
their fusing point with the application of sufficient axial pressure between the two
optical fibers. It is therefore essential that the stripped (of cabling and buffer coating)
fiber ends are adequately positioned and aligned in order to achieve good continuity of
the transmission medium at the junction point. Hence the fibers are usually positioned
and clamped with the aid of an inspection microscope.



Flame heating sources such as microplasma torches (argon and hydrogen) and
oxhydricmicroburners (oxygen, hydrogen and alcohol vapor) have been utilized with
some success. However, the most widely used heating source is an electric arc. This
technique offers advantages of consistent, easily controlled heat with adaptability for use
under field conditions.

A schematic diagram of the basic arc fusion method is given in Figure 2.21(a)
illustrating how the two fibers are welded together. Figure 2.21(b) shows a development
of the basic arc fusion process which involves the rounding of the fiber ends with a low-
energy discharge before pressing the fibers together and fusing with a stronger arc.

This technique, known as prefusion, removes the requirement for fiber end preparation
which has a distinct advantage in the field environment. It has been utilized with
multimode fibers giving average splice losses of 0.09 db.




Fusion splicing of single-mode fibers with typical core diameters between 5 and 10 pum
presents problems of more critical fiber alignment (i.e. lateral offsets of less than 1 um
are required for low loss joints). However, splice insertion losses below 0.3 dB may be
achieved due to a self-alignment phenomenon which partially compensates for any
lateral offset.

Self-alignment, illustrated in Figure 2.22, is caused by surface tension effects between
the two fiber ends during fusing. An early field trial of single-mode fiber fusion splicing
over a 31.6 km link gave mean splice insertion losses of 0.18 and 0.12 dB at
wavelengths of 1.3 and 1.55 um respectively. Mean splice losses of only 0.06 dB have
also been obtained with a fully automatic single-mode fiber fusion splicing machine
weaken the fiber in the vicinity of the splice. It has been found that even with careful
handling, the tensile strength of the fused fiber may be as low as 30% of that of the
uncoated fiber before fusion.



The fiber fracture generally occurs in the heat affected zone adjacent to the fused joint.
The reduced tensile strength is attributed to the combined effects of surface damage
caused by handling, surface defect growth during heating and induced residential
stresses due to changes in chemical composition. It is therefore necessary that the
completed splice is packaged so as to reduce tensile loading upon the fiber in the
vicinity of the splice.

2. Mechanical splices

A number of mechanical techniques for splicing individual optical fibers have been
developed. A common method involves the use of an accurately produced rigid
alignment tube into which the prepared fiber ends are permanently bonded. This snug
tube splice is illustrated in Figure 2.23(a) and may utilize a glass or ceramic capillary
with an inner diameter just large enough to accept the optical fibers. Transparent
adhesive (e.g. epoxy resin) is injected through a transverse bore in the capillary to give
mechanical sealing and index matching of the splice. Average insertion losses as low as
0.1 dB have been obtained with multimode graded index and single-mode fibers using
ceramic capillaries. However, in general, snug tube splices exhibit problems with
capillary tolerance requirements. Hence as a commercial product they may exhibit losses
of up to 0.5 dB.



Mechanical splicing technique which avoids the critical tolerance requirements of the
snug tube splice is shown in Figure 2.23(b). This loose tube splice uses an oversized
square-section metal tube which easily accepts the prepared fiber ends. Transparent
adhesive is first inserted into the tube followed by the fibers. The splice is self-aligning
when the fibers are curved in the same plane, forcing the fiber ends simultaneously into
the same corner of the tube, as indicated in Figure 2.23(b). Mean splice insertion losses
of 0.073 dB have been achieved using multimode graded index fibers with the loose
tube approach.

Other common mechanical splicing techniques involve the use of grooves to secure the
fibers to be jointed. A simple method utilizes a V-groove into which the two prepared
fiber ends are pressed. The V-groove splice which is illustrated in Figure 2.24(a) gives
alignment of the prepared fiber ends through insertion in the groove. The splice is made
permanent by securing the fibers in the V-groove with epoxy resin. Jigs for producing
Vgroove splices have proved quite successful, giving joint insertion losses of around 0.1
dB



V-groove splices formed by sandwiching the butted fiber ends between a V-groove glass
substrate and a flat glass retainer plate, as shown in Figure 2.24(b), have also proved
very successful in the laboratory. Splice insertion losses of less than 0.01 dB when
coupling single-mode fibers have been reported using this technique. However,
reservations are expressed regarding the field implementation of these splices with
respect to manufactured fiber geometry, and housing of the splice in order to avoid
additional losses due to local fiber bending.

A further variant on the V-groove technique is the elastic tube or elastomeric splice
shown in Figure 2.25. The device comprises two elastomeric internal parts, one of which
contains a V-groove. An outer sleeve holds the two elastic parts in compression to ensure
alignment of the fibers in the \V-groove, and fibers with different diameters tend to be
centered and hence may be successfully spliced. Although originally intended for
multimode fiber connection, the device has become a widely used commercial product
which is employed with single-mode fibers, albeit often as a temporary splice for
laboratory investigations. The splice loss for the elastic tube device was originally
reported as 0.12 dB or less but is generally specified as around 0.25 dB for the
commercial product. In addition, index-matching gel is normally employed within the
device to improve its performance.



A slightly more complex groove splice known as the Springroove® splice utilized a
bracket containing two cylindrical pins which serve as an alignment guide for the two
prepared fiber ends. The cylindrical pin diameter was chosen to allow the fibers to
protrude above the cylinders, as shown in Figure 2.26(a). An elastic element (a spring)
was used to press the fibers into a groove and maintain the fiber end alignment, as
illustrated in Figure 2.26(b). The complete assembly was secured using a drop of epoxy
resin. Mean splice insertion losses of 0.05 dB were obtained using multimode graded
index fibers with the Springroove splice. This device found practical use in Italy.

An example of a secondary aligned mechanical splice for multimode fiber is shown in
Figure 2.27. This device uses precision glass capillary tubes called ferrules as the
secondary elements with an alignment sleeve of metal or plastic into which the glass
tubed fibers are inserted. Normal assembly of the splice using 50 pum core diameter fiber
yields an average loss of around 0.2 dB.



3. Multiple splices

Multiple simultaneous fusion splicing of an array of fibers in a ribbon cable has been
demonstrated for both multimode and single-mode fibers. In both cases a 12-fiber ribbon
was prepared by scoring and breaking prior to pressing the fiber ends onto a contact
plate to avoid difficulties with varying gaps between the fibers to be fused.

An electric are fusing device was then employed to provide simultaneous fusion. Such a
device is now commercially available to allow the splicing of 12 fibers simultaneously
in a time of around 6 minutes, which requires only 30 seconds per splice. Splice losses
using this device with multimode graded index fiber range from an average of 0.04 dB
to a maximum of 0.12 dB, whereas for single-mode fiber the average loss is 0.04 dB
with a 0.4 dB maximum.



A simple technique employed for multiple simultaneous splicing involves mechanical
splicing of an array of fibers, usually in a ribbon cable. The V-groove multiple-splice
secondary element comprising etched silicon chips has been used extensively in the
United States for splicing multimode fibers. In this technique a 12-fiber splice is
prepared by stripping the ribbon and coating material from the fibers. Then the 12 fibers
are laid into the trapezoidal* grooves of a silicon chip using a comb structure, as shown
in Figure 2.28. The top silicon chip is then positioned prior to applying epoxy to the
chip—ribbon interface. Finally, after curing, the front end face is ground and polished.

The process is normally carried out in the factory and the arrays are clipped together in
the field, putting index-matching silica gel between the fiber ends. The average splice
loss obtained with this technique in the field is 0.12 dB, with the majority of the loss
resulting from intrinsic fiber mismatch. Major advantages of this method are the
substantial reduction in splicing time (by more than a factor of 10) per fiber and the
increased robustness of the final connection. Although early array splicing investigations
using silicon chips demonstrated the feasibility of connecting 12*12 fiber arrays, in
practice only single 12-fiber ribbons have been spliced at one time due to concerns in
relation to splice tolerance and the large number of telecommunication channels which
would be present in the two-dimensional array.

An alternative V-groove flat chip molded from a glass-filled polymer resin has been
employed in France. Moreover, direct mass splicing of 12-fiber ribbons has also been
accomplished [Ref. 63]. In this technique simultaneous end preparation of all 24 fibers
was achieved using a ribbon grinding and polishing procedure. The ribbons were then
laid in guides and all 12 fibers were positioned in grooves in the glass-filled plastic



Fiber couplers

An optical fiber coupler is a device that distributes light from a main fiber into one or
more branch fibers.* The latter case is more normal and such devices are known as
multiport fiber couplers. Requirements are increasing for the use of these devices to
divide or combine optical signals for application within optical fiber information
distribution systems including data buses, LANs, computer networks and
telecommunication access networks.

Optical fiber couplers are often passive devices in which the power transfer takes place
either:

(a) through the fiber core cross-section by butt jointing the fibers or by using some form
of imaging optics between the fibers (core interaction type); or



(b) through the fiber surface and normal to its axis by converting the guided core modes
to both cladding and refracted modes which then enable the power-sharing mechanism
(surface interaction type).

Multiport optical fiber couplers can also be subdivided into the following three main
groups, as illustrated in Figure 2.32.

1. Three- and four-port* couplers, which are used for signal splitting, distribution and
combining.

2. Star couplers, which are generally used for distributing a single input signal to
multiple outputs.

3. Wavelength division multiplexing (WDM) devices, which are a specialized form of
coupler designed to permit a number of different peak wavelength optical signals to be
transmitted in parallel on a single fiber.




In this context WDM couplers either combine the different wavelength optical signal
onto the fiber (i.e. multiplex) or separate the different wavelength optical signals output
from the fiber (i.e. demultiplex). Ideal fiber couplers should distribute light among the
branch fibers with no scattering losst or the generation of noise, and they should
function with complete